首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Most of the current analytical methods depend largely on laboratory-based analytical techniques that require expensive and bullky equipment,potentially incur costly testing,and involve lengthy detection processes.With increasing requirements for point-of-care testing(POCT),more attention has been paid to miniaturized analytical devices.Miniaturized electrochemical(MEC)sensors,including different material-based MEC sensors(such as DNA-,paper-,and screen electrode-based),have been in strong demand in analytical science due to their easy operation,portability,high sensitivity,as well as their short analysis time.They have been applied for the detection of trace amounts of target through measuring changes in electrochemical signal,such as current,voltage,potential,or impedance,due to the oxidation/reduction of chemical/biological molecules with the help of electrodes and electrochemical units.MEC sensors present great potential for the detection of targets including small organic molecules,metal ions,and biomolecules.In recent years,MEC sensors have been broadly applied to POCT in various fields,including health care,food safety,and environmental monitoring,owing to the excellent advantages of electrochemical(EC)technologies.This review summarized the state-of-the-art advancements on various types of MEC sensors and their applications in POCT.Furthermore,the future perspectives,opportunities,and challenges in this field are also discussed.  相似文献   

2.
Feng Pan 《结构化学》2020,39(1):7-10
Machine learning is an emerging method to discover new materials with specific characteristics.An unsupervised machine learning research is highlighted to discover new potential lithium ionic conductors by screening and clustering lithium compounds,providing inspirations for the development of solid-state electrolytes and practical batteries.  相似文献   

3.
Designing defect-engineered semiconductor heterojunctions can effectively promote the charge carrier separation.Herein,novel ceria(CeO2) quantum dots(QDs) decorated sulfur-doped carbon nitride nanotubes(SCN NTs) were synthesized via a thermal polycondensation coupled in situ depositionprecipitation method without use of template or surfactant.The structure and morphology studies indicate that ultrafine CeO2 QDs are well distributed inside and outside of SCN NTs offering highly dispersed active sites and a large contact interface between two components.This leads to the promoted formation of rich Ce3+ ion and oxygen vacancies as confirmed by XPS.The photocatalytic performance can be facilely modulated by the content of CeO2 QDs introduced in SCN matrix while bare CeO2 does not show activity of hydrogen production.The optimal catalyst with 10% of CeO2 loading yields a hydrogen evolution rate of 2923.8 μmol h-1 g-1 under visible light,remarkably higher than that of bare SCN and their physical mixtures.Further studies reveal that the abundant surface defects and the created 0 D/1 D junctions play a critical role in improving the separation and transfer of charge carriers,leading to superior solar hydrogen production and good stability.  相似文献   

4.
The demand on low-carbon emission fabrication technologies for energy storage materials is increasing dramatically with the global interest on carbon neutrality.As a promising active material for metal-sulfur batteries,sulfur is of great interest due to its high-energy-density and abundance.However,there is a lack of industry-friendly and low-carbon fabrication strategies for high-performance sulfur-based active particles,which,however,is in critical need by their practical success.Herein,based on a hail-inspired sulfur nano-storm(HSN)technology developed in our lab,we report an energy-saving,solvent-free strategy for producing core-shell sulfur/carbon electrode particles(CNT@AC-S)in minutes.The fabrication of the CNT@AC-S electrode particles only involves low-cost sulfur blocks,commercial carbon nanotubes(CNT)and activated carbon(AC)micro-particles with high specific surface area.Based on the above core-shell CNT@AC-S particles,sulfur cathode with a high sulfur-loading of 9.2 mg cm-2 delivers a stable area capacity of 6.6 mAh cm-2 over 100 cycles.Furthermore,even for sulfur cathode with a super-high sulfur content(72 wt%over the whole electrode),it still delivers a high area capacity of 9 mAh cm-2 over50 cycles in a quasi-lean electrolyte condition.In a nutshell,this study brings a green and industryfriendly fabrication strategy for cost-effective production of rationally designed S-rich electrode particles.  相似文献   

5.
Transition metal selenides have been widely studied as anode materials of sodium ion batteries(SIBs),however,the investigation of solid-electrolyte-interface(SEI)on these materials,which is critical to the electrochemical performance of SIBs,remains at its infancy.Here in this paper,ZnSe@C nanoparticles were prepared from ZIF-8 and the SEI layers on these electrodes with and without reduced graphene oxide(rGO)layers were examined in details by X-ray photoelectron spectroscopies at varied charged/discharged states.It is observed that fast and complicated electrolyte decomposition reactions on ZnSe@C leads to quite thick SEI film and intercalation of solvated sodium ions through such thick SEI film results in slow ion diffusion kinetics and unstable electrode structure.However,the presence of rGO could efficiently suppress the decomposition of electrolyte,thus thin and stable SEI film was formed.ZnSe@C electrodes wrapped by rGO demonstrates enhanced interfacial charge transfer kinetics and high electrochemical performance,a capacity retention of 96.4%,after 1000 cycles at 5 A/g.This study might offer a simple avenue for the designing high performance anode materials through manipulation of SEI film.  相似文献   

6.
常温常湿条件下Au/MeO~x催化剂上CO氧化性能   总被引:12,自引:0,他引:12  
王桂英  张文祥  蒋大振  吴通好 《化学学报》2000,58(12):1557-1562
利用共沉淀法制备了Au/MeO~x催化剂(Me=Al,Co,Cr,Cu,Fe,Mn,Ni,Zn)。在常温常湿条件下,考察了不同氧化物负载的金基催化剂的CO氧化性能。结果表明,氧化物种类对催化剂的活性和稳定性均有较大的影响。Cu,Mn,Cr等氧化物负载的金基催化剂的活性较差,而Zn,Fe,Co,Ni,Al等金属氧化物负载的金基催化剂可将CO完全氧化,又具有一定的稳定性,在相同反应条件下,CO完全转化时的稳定性顺序为Au/ZnO>Au/α-Fe~2O~3>Au/Co~3O~4>Au/γ-Al~2O~3≈Au/NiO。还发现水对Au/MnO~x催化剂的活性和稳定性有负作用,而对180℃焙烧制备的Au/ZnO-180催化剂的活性和稳定性均有明显的湿度增强作用。  相似文献   

7.
CXN天然沸石的研究2: 吸附性质   总被引:3,自引:0,他引:3  
李军  邱瑾  龙英才 《化学学报》2000,58(8):988-991
采用N~2,NH~3,CO~2,乙烯,丙烯,水,甲醇,乙醇,丙醇等作为吸附剂,研究了由我国CXN天然沸石改性制得的H-STI和Na-STI沸石的吸附性质,H-STI和Na-STI沸石的BET表面积及微孔孔体积约为420m^2/g和0.20m^3/g。根据NH~3和CO~2在H-STI沸石上的吸附等温线计算得到它们的吸附热分别为44.8和26.5kJ/mol。乙烯,丙烯,甲醇,乙醇,丙醇等在Na-STI沸石上的吸附等温线表明该沸石对有机分子的吸附具有链长选择性。在低分压下水相对于甲醇的吸附量表明沸石具有一定的疏水性质。  相似文献   

8.
Lithium-sulfur(Li-S)battery is regarded as one of the most promising next-generation energy storage systems due to the ultra-high theoretical energy density of 2600 Wh kg-1.To address the insulation nature of sulfur,nanocarbon composition is essential to afford acceptable cycling capacity but inevitably sacrifices the actual energy density under working conditions.Therefore,rational structural design of the carbon/sulfur composite cathode is of great significance to realize satisfactory electrochemical performances with limited carbon content.Herein,the cathode carbon distribution is rationally regulated to construct high-sulfur-content and high-performance Li-S batteries.Concretely,a double-layer carbon(DLC)cathode is prepared by fabricating a surface carbon layer on the carbon/sulfur composite.The surface carbon layer not only provides more electrochemically active surfaces,but also blocks the polysulfide shuttle.Consequently,the DLC configuration with an increased sulfur content by nearly 10 wt%renders an initial areal capacity of 3.40 mAh cm-2 and capacity retention of 83.8%during 50 cycles,which is about two times than that of the low-sulfur-content cathode.The strategy of carbon distribution regulation affords an effective pathway to construct advanced high-sulfur-content cathodes for practical high-energy-density Li-S batteries.  相似文献   

9.
Cost-effective atomically dispersed Fe-N-P-C complex catalysts are promising to catalyze the oxygen reduction reaction(ORR)and replace Pt catalysts in fuel cells and metal-air batteries.However,it remains a challenge to increase the number of atomically dispersed active sites on these catalysts.Here we report a highly efficient impregnation-pyrolysis method to prepare effective ORR electrocatalysts with large amount of atomically dispersed Fe active sites from biomass.Two types of active catalyst centers were identified,namely atomically dispersed Fe sites and FexP particles.The ORR rate of the atomically dispersed Fe sites is three orders of magnitude higher than it of FexP particles.A linear correlation between the amount of the atomically dispersed Fe and the ORR activity was obtained,revealing the major contribution of the atomically dispersed Fe to the ORR activity.The number of atomically dispersed Fe increases as the Fe loading increased and reaching the maximum at 1.86 wt%Fe,resulting in the maximum ORR rate.Optimized Fe-N-P-C complex catalyst was used as the cathode catalyst in a homemade Zn-air battery and good performance of an energy density of 771 Wh kgZn-1,a power density of 92.9 m W cm-2 at 137 m A cm-2 and an excellent durability were exhibited.  相似文献   

10.
Carbon dioxide and methane are two main greenhouse gases which are contributed to serious global warming.Fortunately,dry reforming of methane(DRM),a very important reaction developed decades ago,can convert these two major greenhouse gases into value-added syngas or hydrogen.The main problem retarding its industrialization is the seriously coking formation upon the nickel-based catalysts.Herein,a series of confined indium-nickel(In-Ni)intermetallic alloy nanocatalysts(InxNi@SiO2)have been prepared and displayed superior coking resistance for DRM reaction.The sample containing 0.5 wt.%of In loading(In0.5Ni@SiO2)shows the best balance of carbon deposition resistance and DRM reactivity even after 430 h long term stability test.The boosted carbon resistance can be ascribed to the confinement of core–shell structure and to the transfer of electrons from Indium to Nickel in In-Ni intermetallic alloys due to the smaller electronegativity of In.Both the silica shell and the increase of electron cloud density on metallic Ni can weaken the ability of Ni to activate C–H bond and decrease the deep cracking process of methane.The reaction over the confined InNi intermetallic alloy nanocatalyst was conformed to the Langmuir-Hinshelwood(L-H)mechanism revealed by in situ diffuse reflectance infrared Fourier transform spectroscopy(in-situ DRIFTS).This work provides a guidance to design high performance coking resistance catalysts for methane dry reforming to efficiently utilize these two main greenhouse gases.  相似文献   

11.
申书昌  蔡君洋  王利鸿 《应用化学》2016,33(9):1085-1092
以对苯二胺、3-氯丙醇和4-羟基苯甲醛为原料,合成对苯二(对苯丙氧基醇)亚胺液晶基元,再与对苯二异氰酸酯和1,3-双(3-氨基丙基)四甲基二硅氧烷反应,合成席夫碱型硅氧烷聚氨酯液晶聚合物。 通过红外光谱法、X射线衍射、热分析、偏光显微镜等技术手段对其结构和性能进行了表征。 结果表明,该物质为席夫碱有机硅聚氨酯液晶聚合物,属于近晶相液晶,液晶区间为103~150 ℃,热分解温度为300 ℃。 用席夫碱型硅氧烷聚氨酯液晶固定相制备填充色谱柱,考察固定液的相对极性及其对取代苯位置异构体的色谱分离性能。 合成的席夫碱型硅氧烷聚氨酯液晶聚合物的液晶温度范围为103~146 ℃,属于强极性固定液(Px=79),各组分色谱峰的分离度为0.96~3.33。  相似文献   

12.
液晶二聚体     
白炳莲  于智莘  王海涛  李敏 《有机化学》2008,28(11):1857-1863
液晶二聚体作为半柔性主链型液晶聚合物的简化模型, 通过对其液晶性质的研究, 有助于理解更复杂聚合物体系的液晶行为. 另外, 液晶二聚体作为一类特殊的液晶也有其自身的相结构和相行为. 以分子结构与液晶态的相互关系为主线, 系统介绍了目前文献报道的对称及非对称棒状液晶二聚体(线形、H形、U形、T形)、盘状液晶二聚体(对称的盘-盘状液晶二聚体和非对称的盘-棒状液晶二聚体)和香蕉形液晶二聚体(对称的香蕉-香蕉形液晶二聚体和非对称的香蕉-棒状液晶二聚体)等各种不同类型的液晶二聚体的研究进展, 以期为新型液晶二聚体的分子设计提供一些借鉴.  相似文献   

13.
韩国志  朱沈  吴生蓉  庞峰飞 《化学学报》2012,70(17):1827-1830
将胆甾相液晶填充进胶体晶体内部空隙, 通过胆甾相液晶与胶体晶体的耦合, 构建了一种新型可调制液晶光子晶体. 填充于胶体晶体内部的胆甾相液晶织构呈现典型的手性近晶相(S)特征. 由于胆甾相液晶具有特定的选择性反射, 当胶体晶体的带隙处于胆甾相液晶的反射波长范围之内, 则随着温度的改变, 胶体晶体的带隙与胆甾相液晶的带隙同时发生蓝移. 在一定温度条件下, 胆甾相液晶的带隙将与胶体晶体的带隙发生耦合, 实现了光子晶体带隙在单峰与双峰之间的可逆切换.  相似文献   

14.
Summary: Here we applied metal nanoparticles as a dopant of liquid crystals. Since liquid crystal molecules are self-assembled, it is not so easy to disperse metal nanoparticles in liquid crystal media. We first prepared metal nanoparticles protected by liquid crystal molecules by reduction of metal ions in the presence of liquid crystal molecules. This liquid crystal molecule-protected metal nanoparticles can be easily dispersed in liquid crystal media to fabricate liquid crystal sol containing metal nanoparticles. A simple liquid crystal molecule, 4′-pentylbiphenyl-4-carbonitrile (abbreviated as 5CB) was used in the present experiments at first. 5CB sol containing metal nanoparticles could construct novel twisted nematic liquid crystal devices (TN-LCDs), which revealed the electrooptic properties depending on the kind of metal of nanoparticles. During the experiments we discovered that 5CB-protected metal nanoparticles could move in liquid crystal media by applying the voltage. This phenomenon is inconvenient for liquid crystal displays, especially those driven by a matrix of thin-film transistors (TFTs). In order to avoid this phenomenon, we prepared polymer-protected metal nanoparticles and applied them to liquid crystal devices, which provided good performance as the devices, i.e., low driving voltage, rapid response at low temperature, and so on.  相似文献   

15.
The problems of photoinitiator contamination are addressed for the liquid crystal phase in polymer dispersed liquid crystal films formed by photopolymerization induced phase separation of liquid crystal from monomer solutions. Initiator contamination lowers the clearing point of the liquid crystal phase, and decreases the photostability and resistivity of the polymer dispersed liquid crystal. These problems are minimized by replacing the conventional photoinitiators with copolymerizable initiators which become incorporated in the polymer phase as it separates. Copolymerizable photoinitiators are studied and used to form polymer dispersed liquid crystals with higher clearing point liquid crystal phases, higher resistivity, and better photostability than polymer dispersed liquid crystals formed with conventional photoinitiators. These improvements provide very significant advantages for many polymer dispersed liquid crystal applications.  相似文献   

16.
近晶型聚硅氧烷侧链液晶的合成与表征   总被引:1,自引:0,他引:1  
以烯丙基溴、对羟基苯甲酸、对氰基苯酚为主要原料合成了液晶基元对-烯丙氧基苯甲酸对-羟基苯氰酯,通过硅氢化加成反应将其接枝到聚甲基氢硅氧烷主链上,合成了一种新型的聚硅氧烷侧链液晶.通过傅里叶变换红外光谱仪(FT-IR)、氢核磁共振仪(1H-NMR)、差示扫描量热仪(DSC)、热台偏光显微镜(POM)和X-射线衍射仪(XR...  相似文献   

17.
Abstract

The problems of photoinitiator contamination are addressed for the liquid crystal phase in polymer dispersed liquid crystal films formed by photopolymerization induced phase separation of liquid crystal from monomer solutions. Initiator contamination lowers the clearing point of the liquid crystal phase, and decreases the photostability and resistivity of the polymer dispersed liquid crystal. These problems are minimized by replacing the conventional photoinitiators with copolymerizable initiators which become incorporated in the polymer phase as it separates. Copolymerizable photoinitiators are studied and used to form polymer dispersed liquid crystals with higher clearing point liquid crystal phases, higher resistivity, and better photostability than polymer dispersed liquid crystals formed with conventional photoinitiators. These improvements provide very significant advantages for many polymer dispersed liquid crystal applications.  相似文献   

18.
对壬基酚聚氧乙烯醚(IgepalCO)系列表面活性剂,生成何种溶致液晶与其EO基团数n有关,而在何浓度范围内生成溶致液晶则与生成溶致液晶的最低水含量及最大水增溶量有关.EO基团数n小于10时,生成层状液晶,n大于10时则生成六角状液晶,层状液晶两亲双层内,水与表面活性剂的最低摩尔比rmin和最高摩尔比rmax随EO基团数n增加分别是非线型增加与线型增加,在IgepalCO520(n=5)中加入IgepalCO710(n=10.5),对层状液晶的生成无显著影响,在IgepalCO710中加入IgepalCO520,则对六角状液晶的生成产生显著影响,出现了六角状液晶向层状液晶的转变。  相似文献   

19.
聚合物分散液晶膜   总被引:1,自引:0,他引:1  
聚合物分散液晶膜是将液晶和聚合物结合,得到的一种综合性能优异的膜材料,液晶分子赋予了聚合物分散液晶膜显著的电光特性,使其受到了广泛的研究,并有着广阔的应用前景。而聚合物作为成膜材料,起着辅助但是重要的作用,其结构和固化过程是影响聚合物分散液晶膜电光特性的重要因素。本文简要综述了聚合物分散液晶膜的制备方法、电光特性的影响因素及研究手段。  相似文献   

20.
张洪月  王倩  王冬  田思思  赵彤 《化学通报》2020,83(12):1122-1126
为了实现液晶的分散、保护和致稳,完成了DYE液晶的包覆。对该方法所采用的芯壁比、乳化剂含量、剪切速度和剪切时间等影响微胶囊包覆因素做了研究。首先,用自由基聚合法制备了液晶微胶囊。接着,以偏光显微镜(POM)检验液晶微胶囊的包覆效果,即在液晶微胶囊经过加热前后,液晶是否仍然保持其独有的光学特性。然后,在分析比较SEM和激光粒度仪等评价方法的性能的基础上,说明了液晶微胶囊的形貌及粒径分布。最后,利用傅里叶变换红外光谱仪再次验证了液晶微胶囊的包覆效果。实验结果表明:当芯壁比为5:4时,剪切速度为7000 rpm,剪切时间为10 min,乳化剂HSMA含量为5 ml时,微胶囊的形貌及粒径分布最优,液晶微胶囊显色性能最优。研制的DYE液晶微胶囊具有单分散性好、显色性优、耐高温能力强等优点,并以此微胶囊制备了热至变色液晶膜。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号