首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Photoelectron spectra of neutral silver trimers, grown in ultracold helium nanodroplets, are recorded after ionization with laser pulses via a strong optical resonance of this species. Varying the photon energy reveals that direct vertical two-photon ionization is hindered by a rapid relaxation into the lower edge of a long-living excited state manifold. An analysis of the ionization threshold of the embedded trimer yields an ionization potential of 5.74+/-0.09 eV consistent with the value found in the gas phase. The asymmetrical form of the electron energy spectrum, which is broadened toward lower kinetic energies, is attributed to the influence of the matrix on the photoionization process. The lifetime of the excited state was measured in a two-color pump-probe experiment to be 5.7+/-0.6 ns.  相似文献   

2.
We have investigated the ionization threshold behavior of small helium cluster ions (cluster size n=2-10) formed via electron-impact ionization of neutral helium droplets and derive appearance energies for mass-selected cluster ions using a nonlinear least-square-fitting procedure. Moreover, we report magic numbers in the mass spectrum observed at the electron energy of 70 eV. The apparatus used for the present measurements is a hemispherical electron monochromator combined with a quadrupole mass spectrometer. Our experiment demonstrates that helium clusters are not only exclusively formed via direct ionization above the atomic ionization potential but also indirectly via autoionizing Rydberg states. The present results are compared with previous electron-impact and photoionization results.  相似文献   

3.
Photoemission electron attachment ion mobility spectrometry (PE-EA-IMS), with a source of photoelectrons induced by vacuum ultraviolet radiation on a metal surface, has been developed to study electron attachment reaction at atmospheric pressure using nitrogen as the buffer gas. Based on the negative ion mobility spectra, the rate constants for electron attachment to tetrachloromethane and chloroform were measured at ambient temperature as a function of the average electron energy in the range from 0.29 to 0.96 eV. The experimental results are in good agreement with the data reported in the literature.  相似文献   

4.
The dissociative electron attachment to the gas phase nucleobase adenine is studied using two different experiments. A double focusing sector field mass spectrometer is utilized for measurements requiring high mass resolution, high sensitivity, and relative ion yields for all the fragment anions and a hemispherical electron monochromator instrument for high electron energy resolution. The negative ion mass spectra are discussed at two different electron energies of 2 and 6 eV. In contrast to previous gas phase studies a number of new negative ions are discovered in the mass spectra. The ion efficiency curves for the negative ions of adenine are measured for the electron energy range from about 0 to 15 eV with an electron energy resolution of about 100 meV. The total anion yield derived via the summation of all measured fragment anions is compared with the total cross section for negative ion formation measured recently without mass spectrometry. For adenine the shape of the two cross section curves agrees well, taking into account the different electron energy resolutions; however, for thymine some peculiar differences are observed.  相似文献   

5.
High resolution IR spectra of aniline, styrene, and 1,1-diphenylethylene cations embedded in superfluid helium nanodroplets have been recorded in the 300-1700 cm(-1) range using a free-electron laser as radiation source. Comparison of the spectra with available gas phase data reveals that the helium environment induces no significant matrix shift nor leads to an observable line broadening of the resonances. In addition, the IR spectra have provided new and improved vibrational transition frequencies for the cations investigated, as well as for neutral aniline and styrene. Indications have been found that the ions desolvate from the droplets after excitation by a non-evaporative process in which they are ejected from the helium droplets. The kinetic energy of the ejected ions is found to be ion specific and to depend only weakly on the excitation energy.  相似文献   

6.
Electron impact (70 eV) mass spectra of a series of C1-C6 alcohols encased in large superfluid liquid helium nanodroplets (approximately 60,000 helium atoms) have been recorded. The presence of helium alters the fragmentation patterns when compared with the gas phase, with some ion product channels being more strongly affected than others, most notably cleavage of the C(alpha)-H bond in the parent ion to form the corresponding oxonium ion. Parent ion intensities are also enhanced by the helium, but only for the two cyclic alcohols studied, cyclopentanol and cyclohexanol, is this effect large enough to transform the parent ion from a minor product (in the gas phase) into the most abundant ion in the helium droplet experiments. To demonstrate that these findings are not unique to alcohols, we have also investigated several ethers. The results obtained for both alcohols and ethers are difficult to explain solely by rapid cooling of the excited parent ions by the surrounding superfluid helium, although this undoubtedly takes place. A second factor also seems to be involved, a cage effect which favors hydrogen atom loss over other fragmentation channels. The set of molecules explored in this work suggest that electron impact ionization of doped helium nanodroplets does not provide a sufficiently large softening effect to be useful in analytical mass spectrometry.  相似文献   

7.
Electron impact (EI) mass spectra of a selection of C1-C3 haloalkanes in helium nanodroplets have been recorded to determine if the helium solvent can significantly reduce molecular ion fragmentation. Haloalkanes were chosen for investigation because their EI mass spectra in the gas phase show extensive ion fragmentation. There is no evidence of any major softening effect in large helium droplets ( approximately 60 000 helium atoms), but some branching ratios are altered. In particular, channels requiring C-C bond fission or concerted processes leading to the ejection of hydrogen halide molecules are suppressed by helium solvation. Rapid cooling by the helium is not sufficient to account for all the differences between the helium droplet and gas phase mass spectra. It is also suggested that the formation of a solid "snowball" of helium around the molecular ion introduces a cage effect, which enhances those fragmentation channels that require minimal disruption to the helium cage for products to escape.  相似文献   

8.
Single photon double ionization of CF4 has been studied by means of a time-of-flight photoelectron-photoelectron coincidence technique, which has very recently been extended towards ion detection, with energy analysis for the electrons and mass analysis for the ions. The complete single photon double ionization electron spectrum of CF4 up to a binding energy of approximately 51 eV is presented and discussed, also with the aid of accurate ab initio Green's function calculations. From ion detection in coincidence with the ejected electrons, we derive fragmentation pathway-selected double ionization electron spectra of CF4. From the same data we extract the yield of each doubly charged ion or ion pair as a function of the double ionization energy.  相似文献   

9.
Results of a detailed study on electron interactions with nitromethane (CH(3)NO(2)) embedded in helium nanodroplets are reported. Anionic and cationic products formed are analysed by mass spectrometry. When the doped helium droplets are irradiated with low-energy electrons of about 2 eV kinetic energy, exclusively parent cluster anions (CH(3)NO(2))(n)(-) are formed. At 8.5 eV, three anion cluster series are observed, i.e., (CH(3)NO(2))(n)(-), [(CH(3)NO(2))(n)-H](-), and (CH(3)NO(2))(n)NO(2)(-), the latter being the most abundant. The results obtained for anions are compared with previous electron attachment studies with bare nitromethane and nitromethane condensed on a surface. The cation chemistry (induced by electron ionization of the helium matrix at 70 eV and subsequent charge transfer from He(+) to the dopant cluster) is dominated by production of methylated and protonated nitromethane clusters, (CH(3)NO(2))(n)CH(3)(+) and (CH(3)NO(2))(n)H(+).  相似文献   

10.
Electron impact ionization of helium nano-droplets containing several 104 He atoms and doped with CCl4 or SF6 molecules is studied with high-mass resolution. The mass spectra show significant clustering of CCl4 molecules, less so for SF6 under our experimental conditions. Positive ion efficiency curves as a function of electron energy indicate complete immersion of the molecules inside the helium droplets in both cases. For CCl4 we observe the molecular parent cation CCl4+ that preferentially is formed via Penning ionization upon collisions with He*. In contrast, no parent cation SF6+ is seen for He droplets doped with SF6. The fragmentation patterns for both molecules embedded in He are compared with gas phase studies. Ionization via electron transfer to He+ forms highly excited ions that cannot be stabilized by the surrounding He droplet. Besides the atomic fragments F+ and Cl+ several molecular fragment cations are observed with He atoms attached.  相似文献   

11.
A simple, new way to introduce fragile biomolecules into the gas phase via thermal vaporization of nanoparticles is described. The general utility of this technique for the study of biomolecules is demonstrated by coupling this source to tunable synchrotron vacuum ultraviolet radiation. Fragment-free photoionization mass spectra of tryptophan, phenylalanine-glycine-glycine, and beta-carotene are detected with signal-to-noise ratios exceeding 100. The 8.0 eV photoionization mass spectrum of tryptophan nanoparticles vaporized at 373 K is dominated by a single parent ion peak that exhibits a 20-fold enhancement over the methylene indole fragment ion. The degree of dissociative photoionization of tryptophan can be precisely controlled either by the thermal energy imparted into the neutral tryptophan molecule or by the energy of the ionizing photon. The results reveal how approximately 0.5 eV changes in internal energy affect both the photoionization mass spectrum of tryptophan and the appearance energy of the daughter ion fragments. This method allows the ionization energies of glycine (9.3 +/- 0.1 eV), tryptophan (7.3 +/- 0.2 eV), phenylalanine (8.6 +/- 0.1 eV), phenylalanine-glycine-glycine (9.1 +/- 0.1 eV), and beta-carotene (<7.0 eV) molecules to be determined directly from the photoionization efficiency spectra.  相似文献   

12.
Low-energy (0-12 eV) electron attachment to molecules of a typical matrix substance used for matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS), namely alpha-cyano-4-hydroxicynnamic acid, has been investigated in the gas phase at different temperatures ranging from 140 degrees C to 260 degrees C by means of electron capture negative-ion mass spectrometry (ECNI MS). The yield of negative ions, formed by electron capture, was measured as a function of incident electron energy for four different temperatures. The long-lived parent molecular anion, [M]- (m/z 189), was observed in the negative-ion mass spectra of the substance under investigation. Its autodetachment lifetime was estimated to be approximately 600 micros. It was found that at 140 degrees C the main decay channel of the long-lived temporary molecular anion of alpha-cyano-4-hydroxicynnamic acid is a formation of the [M-COOH]-; fragment negative ion (m/z 144) with an intensity of 37.2% in percentage terms in respect of the total anion current. There are also [M-H]-, [M-CO2]- and [CN]- fragments in the spectra with intensities of about 7.7%, 21.6% and 3.1% at 140 degrees C. It was shown that the escape of the CO2 molecule from the parent molecular anion is a slow process. It takes [M]- about 10 micros to decay on carbon dioxide molecules and [M-CO2]- fragment anions. Increasing the temperature of the target molecule alters the negative-ion mass spectra of alpha-cyano-4-hydroxicynnamic acid significantly. A possible role for the findings in typical MALDI MS experiments is discussed.  相似文献   

13.
Doubly charged ion mass spectra of 23 alkenes have been measured using a double focusing Hitachi RMU-7L mass spectrometer. Ion mass spectra were obtained using 100 eV electron energy and 3.2 kV ion accelerating voltage. Each 2E spectrum was determined using the olefinic compound under investigation as the target gas. In general, spectra are dominated by fragment ions which result from extensive hydrogen loss from the doubly charged molecular ion. Appearnce energies have been measured for intense fragment ions in each spectrum.  相似文献   

14.
Vibronically resolved spectra for the UO+2 cation have been recorded using the pulsed field ionization zero electron kinetic energy (PFI-ZEKE) technique. For the ground state, long progressions in both the bending and symmetric stretch vibrations were observed. Bend and stretch progressions of the first electronically excited state were also observed, and the origin was found at an energy of 2678 cm(-1) above the ground state zero-point level. This observation is consistent with a recent theoretical prediction [Infante et al., J. Chem. Phys. 127, 124308 (2007)]. The ionization energy for UO2, derived from the PFI-ZEKE spectrum, namely, 6.127(1) eV, is in excellent agreement with the value obtained from an earlier photoionization efficiency measurement. Delayed ionization of UO2 in the gas phase has been reported previously [Han et al., J. Chem. Phys. 120, 5155 (2004)]. Here, we extend the characterization of the delayed ionization process by performing a quantitative study of the ionization rate as a function of the energy above the ionization threshold. The ionization rate was found to be 5 x 10(6) s(-1) at threshold, and increased linearly with increasing energy in the range investigated (0-1200 cm(-1)).  相似文献   

15.
The dissociative photoionization of the chloroform and chloroform-d molecules has been studied in the valence region and around the chlorine 2p edge. Time-of-flight mass spectrometry in the coincidence mode-namely, photoelectron-photoion coincidence (PEPICO)-was employed. He I lamp and tunable synchrotron radiation were used as light sources. Total and partial ion yields have been recorded as a function of the photon energy. Singly, doubly, and triply ionized species have been observed below (195 eV), on (201 eV), and above (230 eV) the Cl 2p resonances. A definite degree of site-selective fragmentation was observed at the Cl 2p resonance as the relative contributions of several ionic species were seen to go through a maximum at 201 eV. At the same time all stable doubly charged ions were also observed at 198 eV (below the 2p resonances), resulting from direct ionization processes. Isotopic substitution is shown to provide a very efficient means of improving the mass resolution and assignment of unresolved peaks in spectra of CHCl(3), particularly for those fragments differing by a hydrogen atom. It is suggested that ultrafast fragmentation of the system following 2p excitation to a strongly antibonding state contributes to the large amount of Cl(+) observed in the PEPICO spectrum measured at 201 eV. Kinetic energy distributions were determined for the H(+), D(+), and Cl(+) fragments.  相似文献   

16.
Several polychlorinated phenoxyphenols with three to nine chlorine atoms were examined as their methyl ethers by electron capture negative ion and positive ion chemical ionization and electron impact mass spectrometry. In chemical ionization studies methane, hydrogen, nitrogen, helium and argon were used as reagent gases. Selected compounds were also examined with deuteriomethane, ammonia and deuterioammonia as reagent gases. Utilization of chemical ionization spectra in conjuction with electron impact spectra provides substantial structural information about these compounds. Chemical ionization spectra provide information about chlorine atom substitution. The position of phenoxy substitution can be established from electron capture negative ion and positive ion spectra.  相似文献   

17.
Atmospheric pressure photoionization (APPI) followed by mass spectrometric detection was used to ionize a variety of polymers: polyethylene glycol, polymethyl methacrylate, polystyrene, and polysiloxane. In most cases, whatever the polymer or the solvent used (dichloromethane, tetrahydrofuran, hexane, acetone or toluene), only negative ion mode produced intact ions such as chlorinated adducts, with no or few fragmentations, in contrast to the positive ion mode that frequently led to important in-source fragmentations. In addition, it was shown that optimal detection of polymer distributions require a fine tuning of other source parameters such as temperature and ion transfer voltage. Series of mass spectra were recorded in the negative mode, in various solvents (dichloromethane, tetrahydrofuran, hexane, toluene, and acetone), by varying the photon energy from 8 eV up to 10.6 eV using synchrotron radiation. To these solvents, addition of a classical APPI dopant (toluene or acetone) was not necessary. Courtesy of the synchrotron radiation, it was demonstrated that the photon energy required for an efficient ionization of the polymer was correlated to the ionization energy of the solvent. As commercial APPI sources typically use krypton lamps with energy fixed at 10 eV and 10.6 eV, the study of the ionization of polymers over a wavelength range allowed to confirm and refine the previously proposed ionization mechanisms. Moreover, the APPI source can efficiently be used as an interface between size exclusion chromatography or reverse phase liquid chromatography and MS for the study of synthetic oligomers. However, the photoionization at fixed wavelength of polymer standards with different molecular weights showed that it was difficult to obtain intact ionized oligomers with molecular weights above a few thousands.  相似文献   

18.
Time of flight mass spectrometry, electron‐ion coincidence, and ion yield spectroscopy were employed to investigate for the first time the thiazole (C3H3NS) molecule in the gas phase excited by synchrotron radiation in the soft X‐ray domain. Total ion yield (TIY) and photoelectron‐photoion coincidence (PEPICO) spectra were recorded as a function of the photon energy in the vicinity of the carbon K edge (C1s). The C1s resonant transitions as well as the core ionization thresholds have been determined from the profile of TIY spectrum, and the features were discussed. The corresponding partial ion yields were determined from the PEPICO spectra for the cation species produced upon the molecular photodissociation. Additional ab initio calculations have also been performed from where relevant structural and electronic configuration parameters were obtained for this molecule.  相似文献   

19.
Excitation spectra up to the ionization threshold are reported for barium atoms located on the surface of helium nanodroplets. For states with low principal quantum number, the resonances are substantially broadened and shifted towards higher energy with respect to the gas phase. This has been attributed to the repulsive interaction of the excited atom with the helium at the Franck-Condon region. In contrast, for states with high principal quantum number the resonances are narrower and shifted towards lower energies. Photoelectron and ZEKE spectroscopy reveal that the redshift results from a lowering of the ionization threshold due to polarization of the helium by the barium ionic core. As a result of the repulsive interaction with the helium, excited barium atoms desorb from the surface of the droplets. Only when excited to the 6s6p (1)P(1) state, which reveals an attractive interaction with the helium, the atoms remain attached to the droplets.  相似文献   

20.
The electronic transitions and resonance-enhanced vibrational excitations of octafluorocyclopentene (c-C5F8) have been investigated using high-resolution photoabsorption spectroscopy in the energy range 6-11 eV. In addition, the high-resolution electron energy loss spectrum (HREELS) was recorded under the electric dipolar excitation conditions (100 eV incident energy, approximately 0 degrees scattering angle) over the 5-14 eV energy loss range. A He(I) photoelectron spectrum (PES) has also been recorded between 11 and 20 eV, allowing us to derive a more precise value of (11.288 +/- 0.002) eV for the ground neutral state adiabatic ionization energy. All spectra presented in this paper represent the first and highest resolution data yet reported for octafluorocyclopentene. Ab initio calculations have been performed for helping in the assignment of the spectral bands for both neutral excited states and ionic states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号