首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The use of biomacromolecular therapeutics has revolutionized disease treatment, but frequent injections are required owing to their short half‐life in vivo. Thus there is a need for a drug delivery system that acts as a reservoir and releases the drug remotely “on demand”. Here we demonstrate a simple light‐triggered local drug delivery system through photo‐thermal interactions of polymer‐coated gold nanoparticles (AuNPs) inside an agarose hydrogel as therapeutic depot. Localized temperature increase induced by the visible light exposure caused reversible softening of the hydrogel matrix to release the pre‐loaded therapeutics. The release profile can be adjusted by AuNPs and agarose concentrations, light intensity and exposure time. Importantly, the biological activity of the released bevacizumab was highly retained. In this study we demonstrate the potential application of this facile AuNPs/hydrogel system for ocular therapeutics delivery through its versatility to release multiple biologics, compatibility to ocular cells and spatiotemporal control using visible light.  相似文献   

2.
Catalyst‐assisted self‐assembly is widespread in nature to achieve spatial control over structure formation. Reported herein is the formation of hydrogel micropatterns on catalytic surfaces. Gelator precursors react on catalytic sites to form building blocks which can self‐assemble into nanofibers. The resulting structures preferentially grow where the catalyst is present. Not only is a first level of organization, allowing the construction of hydrogel micropatterns, achieved but a second level of organization is observed among fibers. Indeed, fibers grow with their main axis perpendicular to the substrate. This feature is directly linked to a unique mechanism of fiber formation for a synthetic system. Building blocks are added to fibers in a confined space at the solid–liquid interface.  相似文献   

3.
Considering the excellent performance of halloysite as a catalyst support and in an attempt to benefit from the concept of nanoreactors in the catalysis, an innovative catalytic system has been designed, in which acrylamide and bis‐acrylamide were photo‐polymerized in the presence of palladated halloysite. The novel precipitation photo‐polymerization method avoided the formation of an extended polymeric network, but led to the formation of co‐polymer on the halloysite periphery. The co‐polymer exhibited good swellability in aqueous media and formed hydrogel. This hydrophilic environment around catalytic palladated halloysite can be considered as a nanoreactor that can concentrate the substrate and bring them into the vicinity of the palladated halloysite. This catalytic system was used for promoting hydrogenation of hydrophobic nitro arenes in aqueous media. To avoid immiscibility of hydrophobic substrates and hydrophilic nature of the nanoreactor, that emerged from swelling of hydrogel, β‐cyclodextrin (CD) was utilized as phase transfer agent. The results confirmed high catalytic activity of this catalytic system. Even highly hydrophobic substrates could tolerate hydrogenation under this protocol to furnish the corresponding product in high yield. Finally, the contribution of both CD and hydrogel to the catalysis was confirmed. Moreover, studying the recyclability of the catalyst as well as Pd leaching proved the high recyclability of the catalyst and low leaching of Pd nanoparticles.  相似文献   

4.
Soft colloidal particles such as hydrogel microspheres assemble at air/water or oil/water interfaces, where the soft colloids are highly deformed and their surface polymer chains are highly entangled with each other. Herein, we report the formation of robust one‐dimensional, string‐like colloidal assemblies through self‐organization of hydrogel microspheres with shape anisotropy at the air/water interface of sessile droplets. Shape‐anisotropic hydrogel microspheres were synthesized via two‐step polymerization, whereby a hydrogel shell was formed onto preformed rigid microellipsoids. The shape anisotropy of the hydrogel microspheres was confirmed by transmission electron microscopy and high‐speed atomic force microscopy as well as by light‐scattering measurements. The present findings are crucial for the understanding of natural self‐organization phenomena, where “softness” influences microscopic assembled structures such as those of Nostoc bacteria.  相似文献   

5.
Supramolecular approaches in transition‐metal catalysis, including catalyst encapsulation, have attracted considerable attention. Compared to enzymes, supramolecular catalysts in general are less complex. Enzyme activity is often controlled by the use of smaller cofactor molecules, which is important in order to control reactivity in complex mixtures of molecules. Interested in increasing complexity and allowing control over supramolecular catalyst formation in response to external stimuli, we designed a catalytic system that only forms an efficient supramolecular complex when a small cofactor molecule is added to the solution. This in turn affects both the activity and selectivity when applied in a hydroformylation reaction. This contribution shows that catalyst encapsulation can be controlled by the addition of a cofactor, which affects crucial catalyst properties.  相似文献   

6.
The synthesis of a thermoresponsive hydrogel of poly(glycidyl methacrylate‐coN‐isopropylacrylamide) (PGMA‐co‐PNIPAM) and its application as a nanoreactor of gold nanoparticles are studied. The thermoresponsive copolymer of PGMA‐co‐PNIPAM is first synthesized by the copolymerization of glycidyl methacrylate and N‐isopropylacrylamide using 2,2′‐azobis(isobutyronitrile) as an initiator in tetrahydrofuran at 70 °C and then crosslinked with diethylenetriamine to form a thermoresponsive hydrogel. The lower critical solution temperature (LCST) of the thermoresponsive hydrogel is about 50 °C. The hydrogel exists as 280‐nm spheres below the LCST. The diameter of the spherical hydrogel gradually decreases to a minimum constant of 113 nm when the temperature increases to 75 °C. The hydrogel can act as a nanoreactor of gold nanoparticles because of the coordination of nitrogen atoms of the crosslinker with gold ions, on which a hydrogel/gold nanocomposite is synthesized. The LCST of the resultant hydrogel/gold nanocomposite is similar to that of the hydrogel. The size of the resultant gold nanoparticles is about 15 nm. The hydrogel/gold nanocomposite can act as a smart and recyclable catalyst. At a temperature below the LCST, the thermoresponsive nanocomposite is a homogeneous and efficient catalyst, whereas at a temperature above the LCST, it becomes a heterogeneous one, and its catalytic activity greatly decreases. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2812–2819, 2007  相似文献   

7.
Autocatalysis and self‐assembly are key processes in developmental biology and are involved in the emergence of life. In the last decade both of these features were extensively investigated by chemists with the final goal to design synthetic living systems. Herein, we describe the autonomous growth of a self‐assembled soft material, that is, a supramolecular hydrogel, able to sustain its own formation through an autocatalytic mechanism that is not based on any template effect and emerges from a peptide (hydrogelator) self‐assembly. A domino sequence of events starts from an enzymatically triggered peptide generation followed by self‐assembly into catalytic nanofibers that induce and amplify their production over time, resulting in a 3D hydrogel network. A cascade is initiated by traces (10?18 m ) of a trigger enzyme, which can be localized allowing for a spatial resolution of this autocatalytic buildup of hydrogel growth, an essential condition on the route towards further cell‐mimic designs.  相似文献   

8.
The release behavior of 16‐doxyl stearic acid (16‐DSA) from hydrogels made from bovine serum albumin (BSA) is characterized. 16‐DSA serves as a model tracer molecule for amphiphilic drugs. Various hydrogel preparation procedures are tested and the fatty acid release from the different gels is compared in detail. These comparisons reach from the macroscopic level, the viscoelastic behavior via rheological characterization to changes on the nanoscopic level concerning the secondary structure of the protein during gelation through infrared (ATR‐IR) spectroscopy. 16‐DSA‐BSA interaction via continuous wave electron paramagnetic resonance (CW EPR) spectroscopy in addition gives a nanoscopic view of small molecule–hydrogel interaction. The combined effects of fatty acid concentration, hydrogel incubation time, and gelation procedures on release behavior are studied via CW EPR spectroscopy and dynamic light scattering (DLS) measurements, which provide deep insight on the interaction of 16‐DSA with BSA hydrogels and the nature and size of the released components, respectively. It is found that the release rate of the fatty acid from BSA hydrogels depends on and can thus be tuned through its loading percentage, duration of hydrogel formation and the type of gelation methods. All of the results confirm the potential of these gels as delivery hosts in pharmaceutical applications allowing the sustained release of drug.  相似文献   

9.
The engineering of bioadhesives to bind and conform to the complex contour of tissue surfaces remains a challenge. We have developed a novel moldable nanocomposite hydrogel by combining dopamine‐modified poly(ethylene glycol) and the nanosilicate Laponite, without the use of cytotoxic oxidants. The hydrogel transitioned from a reversibly cross‐linked network formed by dopamine–Laponite interfacial interactions to a covalently cross‐linked network through the slow autoxidation and cross‐linking of catechol moieties. Initially, the hydrogel could be remolded to different shapes, could recover from large strain deformation, and could be injected through a syringe to adhere to the convex contour of a tissue surface. With time, the hydrogel solidified to adopt the new shape and sealed defects on the tissue. This fit‐to‐shape sealant has potential in sealing tissues with non‐flat geometries, such as a sutured anastomosis.  相似文献   

10.
Controlled radical polymerizations have significantly impacted the field of polymer science by facilitating the synthesis of polymers with greater control over molecular weight, structure, and dispersity (Ð). As these synthetic techniques continue to evolve, more degrees of control can be realized via external regulation. Recent work has demonstrated external regulation of a controlled radical polymerization process with light using a photoredox Ir‐catalyst. While light offers many advantages as a stimulus for polymerization, scaling up presents unique challenges such as shallow and uneven penetration of light through the reaction medium, which negatively impacts the rate of polymerization. This work addresses some of the challenges associated with scaling up light‐mediated controlled radical polymerizations by employing a continuous flow microreactor and selecting appropriate reactor materials for oxygen sensitive reactions. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2693–2698  相似文献   

11.
Various polymerization mechanisms have been developed to prepare peptide‐immobilized poly(ethylene glycol) (PEG) hydrogels, a class of biomaterials suitable for studying cell biology in vitro. Here, a visible light mediated thiol‐acrylate photopolymerization scheme is reported to synthesize dually degradable PEG‐peptide hydrogels with controllable crosslinking and degradability. The influence of immobilized monothiol pendant peptide is systematically evaluated on the crosslinking of these hydrogels. Further, methods are proposed to modulate hydrogel crosslinking, including adjusting concentration of comonomer or altering the design of multifunctional peptide crosslinker. Due to the formation of thioether ester bonds, these hydrogels are hydrolytically degradable. If the dithiol peptide linkers used are susceptible to protease cleavage, these thiol‐acrylate hydrogels can be designed to undergo partial proteolysis. The differences between linear and multiarm PEG‐acrylate (i.e., PEGDA vs PEG4A) are also evaluated. Finally, the use of the mixed‐mode thiol‐acrylate PEG4A‐peptide hydrogels is explored for in situ encapsulation of hepatocellular carcinoma cells (Huh7). The effects of matrix stiffness and integrin binding motif (e.g., RGDS) on Huh7 cell growth and HIPPO pathway activation are studied using PEG4A‐peptide hydrogels. This visible light poly­merized thiol‐acrylate hydrogel system represents an alternative to existing light‐cured hydrogel platforms and shall be useful in many biomedical applications.  相似文献   

12.
A bis‐cyclometalated rhodium(III) complex catalyzes a visible‐light‐activated enantioselective α‐amination of 2‐acyl imidazoles with up to 99 % yield and 98 % ee. The rhodium catalyst is ascribed a dual function as a chiral Lewis acid and, simultaneously, as a light‐activated smart initiator of a radical‐chain process through intermediate aminyl radicals. Notably, related iridium‐based photoredox catalysts reported before were unsuccessful in this enantioselective radical C?N bond formation. The surprising preference for rhodium over iridium is attributed to much faster ligand‐exchange kinetics of the rhodium complexes involved in the catalytic cycle, which is crucial to keep pace with the highly reactive and thus short‐lived nitrogen‐centered radical intermediate.  相似文献   

13.
A self‐healing hydrogel is prepared by crosslinking acrylamide with a host–guest macro‐crosslinker assembled from poly(β‐cyclodextrin) nanogel and azobenzeneacrylamide. The photoisomerizable azobenzene moiety can change its binding affinity with β‐cyclodextrin, therefore the crosslinking density and rheology property of the hydrogel can be tuned with light stimulus. The hydrogel can repair its wound autonomously through the dynamic host–guest interaction. In addition, the wounded hydrogel will lose its ability of self‐healing when exposed to ultraviolet light, and the self‐healing behavior can be recovered upon the irradiation of visible light. The utilizing of host–guest macro‐crosslinking approach manifests the as‐prepared hydrogel reversible and light‐switchable self‐healing property, which would broaden the potential applications of self‐healing polymers.

  相似文献   


14.
Reversible immobilization of DNA and RNA is of great interest to researchers who seek to manipulate DNA or RNA in applications such as microarrays, DNA hydrogels, and gene therapeutics. However, there is no existing system that can rapidly capture and release intact nucleic acids. To meet this unmet need, we developed a functional hydrogel for rapid DNA/RNA capture and release based on the reversible photo‐cycloaddition of psoralen and pyrimidines. The functional hydrogel can be easily fabricated through copolymerization of acrylamide with the synthesized allylated psoralen. The psoralen‐functionalized hydrogel exhibits effective capture and release of nucleic acids spanning a wide range of lengths in a rapid fashion; over 90 % of the capture process is completed within 1 min, and circa 100 % of the release process is completed within 2 min. We observe no deleterious effects on the hybridization to the captured targets.  相似文献   

15.
The most pressing challenges for light‐driven hydrogel actuators include reliance on UV light, slow response, poor mechanical properties, and limited functionalities. Now, a supramolecular design strategy is used to address these issues. Key is the use of a benzylimine‐functionalized anthracene group, which red‐shifts the absorption into the visible region and also stabilizes the supramolecular network through π–π interactions. Acid–ether hydrogen bonds are incorporated for energy dissipation under mechanical deformation and maintaining hydrophilicity of the network. This double‐crosslinked supramolecular hydrogel developed via a simple synthesis exhibits a unique combination of high strength, rapid self‐healing, and fast visible‐light‐driven shape morphing both in the wet and dry state. As all of the interactions are dynamic, the design enables the structures to be recycled and reprogrammed into different 3D objects.  相似文献   

16.
New graphene oxide (GO)‐based hydrogels that contain vitamin B2/B12 and vitamin C (ascorbic acid) have been synthesized in water (at neutral pH value). These gel‐based soft materials have been used to synthesize various metal nanoparticles, including Au, Ag, and Pd nanoparticles, as well as nanoparticle‐containing reduced graphene oxide (RGO)‐based nanohybrid systems. This result indicates that GO‐based gels can be used as versatile reactors for the synthesis of different nanomaterials and hybrid systems on the nanoscale. Moreover, the RGO‐based nanohybrid hydrogel with Pd nanoparticles was used as an efficient catalyst for C? C bond‐formation reactions with good yields and showed high recyclability in Suzuki–Miyaura coupling reactions.  相似文献   

17.
On-off: A living radical polymerization procedure, which utilizes ppm levels of an iridium-based photoredox catalyst, affords control over chain growth through mediation by visible light (see scheme; P(n) =polymer chain, X=halogen, M=monomer). This process can be activated and deactivated by light, enables control over the molecular weight and molecular weight distributions, and tolerates different functional groups.  相似文献   

18.
Temporal and spatial control over polydopamine formation on the nanoscale can be achieved by installing an irradiation‐sensitive polymerization system on DNA origami. Precisely distributed G‐quadruplex structures on the DNA template serve as anchors for embedding the photosensitizer protoporphyrin IX, which—upon irradiation with visible light—induces the multistep oxidation of dopamine to polydopamine, producing polymeric structures on designated areas within the origami framework. The photochemical polymerization process allows exclusive control over polydopamine layer formation through the simple on/off switching of the light source. The obtained polymer–DNA hybrid material shows significantly enhanced stability, paving the way for biomedical and chemical applications that are typically not possible owing to the sensitivity of DNA.  相似文献   

19.
In‐situ gas phase poly(propylene) (PP) formation over a high activity TiCl4‐MgCl2‐supported Ziegler‐Natta catalyst has been studied by video microscopy combined with ex‐situ light microscopy, SEM, high‐resolution TEM, and STEM/PEELS/EDX for the first time. In‐situ observation revealed rapid formation of poly(propylene) beads 9–10 μm in size (< 1/30 s) as well as growth of significant amounts of polymer within local regions. Catalyst particles containing 2–5 nm‐sized MgCl2 crystalline domains are subjected to transformations during catalysis that form PP/catalyst aggregated structures of 30–50 μm in size.  相似文献   

20.
Direct acyl radical formation of linear aldehydes (RCH2‐CHO) and subsequent hydroacylation with electron‐deficient olefins can be effected with various types of metal and nonmetal catalysts/reagents. In marked contrast, however, no successful reports on the use of branched aldehydes have been made thus far because of their strong tendency of generating alkyl radicals through the facile decarbonylation of acyl radicals. Here, use of a hypervalent iodine(III) catalyst under visible light photolysis allows a mild way of generating acyl radicals from various branched aldehydes, thereby giving the corresponding hydroacylated products almost exclusively. Another characteristic feature of this approach is the catalytic use of hypervalent iodine(III) reagent, which is a rare example on the generation of radicals in hypervalent iodine chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号