首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Poly(N‐isopropylacrylamide) (PNIPAAm) gels are temperature‐responsive polymer gels; and were prepared by redox polymerization of N‐isopropylacrylamide in the presence of N,N′‐methylenebisacrylamide as a crosslinking reagent and core‐shell type bioconjugates, which were core‐crosslinked polyion complex micelles formed from the mixture of bovine pancreas trypsin and poly(ethylene glycol)‐block‐poly(α,β‐aspartic acid). The phase transition temperature of PNIPAAm gels was no change with physically immobilization of bioconjugates. Also, the enzymatic activity of bioconjugates was essentially maintained even in PNIPAAm gels, although enzymatic reaction rate was apparently controlled by temperature, i.e., by the degree of swelling of PNIPAAm gels. Further, the control of enzymatic reaction synchronizing the phase transition of PNIPAAm gels immobilized bioconjugates. PNIPAAm gels could immobilize core‐shell type bioconjugates, and were successfully prepared without interfering with the properties of temperature‐responsive polymer gels and the bionanoreactor. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5942–5948, 2007  相似文献   

2.
A series of new heteroleptic MN2S2 transition metal complexes with M = Cu2+ for EPR measurements and as diamagnetic hosts Ni2+, Zn2+, and Pd2+ were synthesized and characterized. The ligands are N2 = 4, 4′‐bis(tert‐butyl)‐2, 2′‐bipyridine (tBu2bpy) and S2 =1, 2‐dithiooxalate, (dto), 1, 2‐dithiosquarate, (dtsq), maleonitrile‐1, 2‐dithiolate, or 1, 2‐dicyanoethene‐1, 2‐dithiolate, (mnt). The CuII complexes were studied by EPR in solution and as powders, diamagnetically diluted in the isostructural planar [NiII(tBu2bpy)(S2)] or[PdII(tBu2bpy)(S2)] as well as in tetrahedrally coordinated[ZnII(tBu2bpy)(S2)] host structures to put steric stress on the coordination geometry of the central CuN2S2 unit. The spin density contributions for different geometries calculated from experimental parameters are compared with the electronic situation in the frontier orbital, namely in the semi‐occupied molecular orbital (SOMO) of the copper complex, derived from quantum chemical calculations on different levels (EHT and DFT). One of the hosts, [NiII(tBu2bpy)(mnt)], is characterized by X‐ray structure analysis to prove the coordination geometry. The complex crystallizes in a square‐planar coordination mode in the monoclinic space group P21/a with Z = 4 and the unit cell parameters a = 10.4508(10) Å, b = 18.266(2) Å, c = 12.6566(12) Å, β = 112.095(7)°. Oxidation and reductions potentials of one of the host complexes, [Ni(tBu2bpy)(mnt)], were obtained by cyclovoltammetric measurements.  相似文献   

3.
Poly(N‐isopropylacrylamide)‐block‐poly(ethylene oxide)‐block‐poly(N‐isopropylacrylamide) (PNIPAAm‐b‐PEO‐b‐PNIPAAm) triblock copolymer was synthesized via the reversible addition‐fragmentation chain transfer/macromolecular design via the interchange of xanthate (RAFT/MADIX) process with xanthate‐terminated poly(ethylene oxide) (PEO) as the macromolecular chain transfer agent. The successful synthesis of the ABA triblock copolymer inspired the preparation of poly(N‐isopropylacrylamide)‐block‐poly(ethylene oxide) (PNIPAAm‐b‐PEO) copolymer networks with N,N′‐methylenebisacrylamide as the crosslinking agent with the similar approach. With the RAFT/MADIX process, PEO chains were successfully blocked into poly(N‐isopropylacrylamide) (PNIPAAm) networks. The unique architecture of PNIPAAm‐b‐PEO networks allows investigating the effect of the blocked PEO chains on the deswelling and reswelling behavior of PNIPAAm hydrogels. It was found that with the inclusion of PEO chains into the PNIPAAm networks as midblocks, the swelling ratios of the hydrogels were significantly enhanced. Furthermore, the PNIPAAm‐b‐PEO hydrogels displayed faster response to the external temperature changes than the control PNIPAAm hydrogel. The accelerated deswelling and reswelling behaviors have been interpreted based on the formation of PEO microdomains in the PNIPAAm networks, which could act as the hydrophilic tunnels to facilitate the diffusion of water molecules in the PNIPAAm networks. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

4.
Rigid N‐(substituted)‐2‐aza‐[3]‐ferrocenophanes L1 and L2 were easily synthesized from 1,1 ‐dicarboxyaldehydeferrocene and the corresponding amines. Ligands L1 and L2 were characterized by 1H NMR, 13C NMR and single‐crystal X‐ray crystallography. The coordination abilities of L1 and L2 with metal ions such as Cu2+, Mg2+, Ni2+, Zn2+, Pb2+ and Cd2+ were evaluated by cyclic voltammetry. The electrochemical shift (ΔE1/2) of 125 mV was observed in the presence of Cu2+ ion, while no significant shift of the Fc/Fc + couple was observed when Mg2+, Ni2+, Zn2+, Pb2+, Cd2+ metal ions were added to the solution of L1 in the mixture of MeOH and H2O. Moreover, the extent of the anodic shift of redox potentials was approximately equal to that induced by Cu2+ alone when a mixture of Cu2+, Mg2+, Ni2+, Zn2+, Pb2+ and Cd2+ was added to a solution of L1. Ligand L1 was proved to selectively sense Cu2+ in the presence of large, excessive first‐row transition and late‐transition metal cations. The coordination model was proposed from the results of controlled experiments and quantum calculations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Synthesis, Structures, NMR and EPR Investigations of Binuclear Bis(N,N,N‴,N‴‐tetraisobutyl‐N′,N″‐isophthaloylbis(selenoureato)) Complexes of NiII and CuII The synthesis of binuclear CuII and NiII complexes of the quadridentate ligand N,N,N‴,N‴‐tetraisobutyl‐N′,N″‐isophthaloylbis(selenourea) and their crystal structures are reported. The complexes crystallize monoclinic, P21/c (Z = 2). In the EPR spectra of the binuclear CuII complex exchange‐coupled CuII‐CuII pairs were observed. In addition the signals of a mononuclear CuII species are observed what will be explained with the assumption of an equilibrium between the binuclear CuII‐complex (CuII‐CuII pairs) and oligomeric complexes with “isolated” CuII ions. Detailed 13C and 77Se NMR investigations on the ligand and the NiII complex allow an exact assignment of all signals of the heteroatoms.  相似文献   

6.
Novel thermo‐responsive poly(N‐isopropylacrylamide)‐block‐poly(l ‐lactide)‐block‐poly(N‐isopropylacylamide) (PNIPAAm‐b‐PLLA‐b‐PNIPAAm) triblock copolymers were successfully prepared by atom transfer radical polymerization of NIPAAm with Br‐PLLA‐Br macroinitiator, using a CuCl/tris(2‐dimethylaminoethyl) amine (Me6TREN) complex as catalyst at 25 °C in a N,N‐dimethylformamide/water mixture. The molecular weight of the copolymers ranges from 18,000 to 38,000 g mol?1, and the dispersity from 1.10 to 1.28. Micelles are formed by self‐assembly of copolymers in aqueous medium at room temperature, as evidenced by 1H NMR, dynamic light scattering (DLS) and transmission electron microscopy (TEM). The critical micelle concentration determined by fluorescence spectroscopy ranges from 0.0077 to 0.016 mg mL?1. 1H NMR analysis in selective solvents confirmed the core‐shell structure of micelles. The copolymers exhibit a lower critical solution temperature (LCST) between 32.1 and 32.8 °C. The micelles are spherical in shape with a mean diameter between 31.4 and 83.3 nm, as determined by TEM and DLS. When the temperature is raised above the LCST, micelle size increases at high copolymer concentrations due to aggregation. In contrast, at low copolymer concentrations, decrease of micelle size is observed due to collapse of PNIPAAm chains. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3274–3283  相似文献   

7.
Linear and crosslinked polymers based on N‐isopropylacrylamide (NIPAAm) exhibit unusual thermal properties. Aqueous solutions of poly(N‐isopropylacrylamide) (PNIPAAm) phase‐separate upon heating above a lower critical solution temperature (LCST), whereas related hydrogels undergo a swelling–shrinking transition at an LCST. A linear copolymer made of NIPAAm/acryloxysuccinimide (98/2 mol/mol) and two hydrogels with different hydrophilicities were prepared. Fourier transform infrared (FTIR) spectroscopy was employed to determine the transition temperature and provide insights into the molecular details of the transition via probing of characteristic bands as a function of temperature. The FTIR spectroscopy method described here allowed the determination of the transition temperature for both the linear and crosslinked polymers. The transition temperatures for PNIPAAm and the gel resulting from the crosslinking with polylysine or N,N′‐methylenebisacrylamide (MBA) were in the same range, 30–35 °C. For the gels, the transition temperature increased with the hydrophilicity of the polymer matrix. The spectral changes observed at the LCST were similar for the free chains and the hydrogels, implying a similar molecular reorganization during the transition. The C H stretching region suggests that the N‐isopropyl groups and the backbone both underwent conformational changes and became more ordered upon heating above the LCST. An analysis of the amide I band suggests that the amide groups of the linear polymer were mainly involved in hydrogen bonding with water molecules below the LCST, the chain being flexible and disordered in a water solution. During the transition, around 20% of these intermolecular hydrogen bonds between the polymer and water were broken and replaced by intramolecular hydrogen bonds. Similar changes were also observed at the LCST of a gel crosslinked with MBA. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 907–915, 2000  相似文献   

8.
Recently, a new class of copolymers, so‐called protein‐like copolymers has been predicted theoretically by computer simulation. In these copolymers, the conformation of the copolymer determines the exposure of certain comonomer units to the outer solution. Depending on the conformation, copolymer molecules with essentially the same comonomer composition could have pronouncedly different properties. The authors demonstrated experimentally such behavior in case of poly[(N‐vinylcaprolactam)‐co‐(N‐vinylimidazole)] (Dokl. Chem. 2001 , 375, 637). One more group of copolymers with protein‐like behavior is copolymers of N‐isopropylacrylamide with N‐vinylimidazole. Poly[(N‐isopropylacrylamide)‐co‐(N‐vinylimidazole)] was synthesized by radical polymerization and separated into two fractions using immobilized metal affinity chromatography on Cu2+‐loaded iminodiacetic acid sepharose CL 6B (Cu2+‐IDA‐sepharose). The unbound fraction which passed through the column and bound fraction eluted with Ethylenediaminetetraacetic acid, disodium salt (EDTA) solution differed significantly in molecular weight, 1.4×106 and 1.35×105, respectively but were very close in comonomer composition, 7.8 and 9.1 mol‐% of imidazole, respectively. The composition of bound fraction was confirmed by titration of imidazole groups. Despite close chemical composition, the bound and unbound fraction behaved differently with respect to temperature‐induced phase separation at different pH values, the dependence of hydrodynamic diameter on pH and concentration of Cu2+‐ions, and the coprecipitation of soybean trypsin inhibitor with the copolymer in the presence of Cu2+‐ions. The differences in the behavior of copolymer fractions are rationalized assuming that the bound fraction presents a protein‐like copolymer.  相似文献   

9.
A new ferrocene functionalized macrocyclic receptor 1,8‐bis(ferrocenylmethyl)‐5,5,7,12,12,14‐hexamethyl‐1,4,8,11‐tetraazacyclotetradecane (R) has been designed and synthesized to study its potential application as chemosensor. The receptor has been characterized by spectral techniques and X‐ray diffraction. The compound crystallizes in the orthorhombic space group Pcab with four molecules in a unit cell (half‐a‐molecule in the asymmetric unit). The electrochemical studies of the receptor in dioxane–water (7:3 v/v, 25 °C) indicate that the receptor is pH‐dependent with a displacement of E1/2 to more anodic potentials with a decrease in the pH from 12 to 5. The electrochemical behaviour of R was also studied in the presence of Mn2+, Co2+, Ni2+, Cu2+ and Zn2+ in dioxane–water (7:3 v/v, 25 °C, [Bun4N][ClO4]), showing that upon complexation the ferrocene–ferrocenium half‐wave potential shifts anodically in relation to that of the free receptor. The maximum electrochemical shift (ΔE1/2) of 46 mV was found in the presence of Cu2+, followed by Co2+ (20 mV), Mn2+ (15 mV), Ni2+ (13 mV) and Zn2+ (9 mV). Moreover, the receptor R is able to electrochemically and selectively sense Cu2+ in the presence of the other transition metal cations studied. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
Synthesis, Structure and EPR Investigations of binuclear Bis(N,N,N?,N?‐tetraisobutyl‐N′,N″‐isophthaloylbis(thioureato)) Complexes of CuII, NiII, ZnII, CdII and PdII The synthesis of binuclear CuII‐, NiII‐, ZnII‐, CdII‐ and PdII‐complexes of the quadridentate ligand N,N,N?,N?‐tetraisobutyl‐N′,N″‐isophthaloylbis(thiourea) and the crystal structures of the CuII‐ and NiII‐complexes are reported. The CuII‐complex crystallizes in two polymorphic modifications: triclinic, (Z = 1) and monoclinic, P21/c (Z = 2). The NiII‐complex was found to be isostructural with the triclinic modification of the copper complex. The also prepared PdII‐, ZnII‐ and CdII‐complexes could not be characterized by X‐ray analysis. However, EPR studies of diamagnetically diluted CuII/PdII‐ and CuII/ZnII‐powders show axially‐symmetric g and A Cu tensors suggesting a nearly planar co‐ordination within the binuclear host complexes. Diamagnetically diluted CuII/CdII powder samples could not be prepared. In the EPR spectra of the pure binuclear CuII‐complex exchange‐coupled CuII‐CuII pairs were observed. According to the large CuII‐CuII distance of about 7,50Å a small fine structure parameter D = 26·10?4 cm?1 is observed; T‐dependent EPR measurements down to 5 K reveal small antiferromagnetic interactions for the CuII‐CuII dimer. Besides of the dimer in the EPR spectra the signals of a mononuclear CuII species are observed whose concentration is T‐dependent. This observation can be explained assuming an equilibrium between the binuclear CuII‐complex (CuII‐CuII pairs) and oligomeric complexes with “isolated” CuII ions.  相似文献   

11.
Exfoliated montmorillonite (MMT)/poly(N‐isopropylacrylamide) (PNIPAAm) and MMT/poly(N‐isopropylacrylamide‐co‐acrylamide) [P(NIPAAm‐co‐AAm)] nanocomposites were fabricated by soap‐free emulsion polymerization. Interestingly, as the content of MMT was increased from 0 to 10 wt %, the glass transition temperature of MMT/PNIPAAm was decreased from 145 to 122 °C, whereas that of the MMT/P(NIPAAm‐co‐AAm) increased from 95 to 153 °C. Although the lower critical solution temperature (LCST) of 32 °C for the MMT/PNIPAAm nanocomposites in aqueous solutions was slightly increased with the content of MMT, that of the MMT/P(NIPAAm‐co‐AAm) was decreased from 70 to 65 °C. A mechanism that the hydrogen bonds between the amide groups of PNIPAAm were interfered by the exfoliated MMT nano‐platelets for the MMT/PNIPAAm nanocomposites and the preferred absorption of acrylamide units to the MMT nanoplatelets rather than N‐isopropylacrylamide in the MMT/P(NIPAAm‐co‐AAm) nanocomposites was suggested to interpret these unusual transition behavior. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 524–530, 2009  相似文献   

12.
A new atom transfer radical polymerization (ATRP) initiator, namely, 2‐(1‐(2‐azidoethoxy)ethoxy)ethyl 2‐bromo‐2‐methylpropanoate containing both “cleavable” acetal linkage and “clickable” azido group was synthesized. Well‐defined azido‐terminated poly(N‐isopropylacrylamide)s (PNIPAAm‐N3)s with molecular weights and dispersity in the range 11,000–19,000 g mol?1 and 1.20–1.28, respectively, were synthesized employing the initiator by ATRP. Acetal containing PCL‐b‐PNIPAAm block copolymer was obtained by alkyne–azide click reaction of azido‐terminated PNIPAAm‐N3 with propargyl‐terminated PCL. Critical aggregation concentration (CAC) of PCL‐b‐PNIPAAm copolymer in aqueous solution was found to be 8.99 × 10?6 M. Lower critical solution temperature (LCST) of PCL‐b‐PNIPAAm copolymer was found to be 32 °C which was lower than that of the precursor PNIPAAm‐N3 (36.4 °C). The effect of dual stimuli viz . temperature and pH on size and morphology of the assemblies of PCL‐b‐PNIPAAm block copolymer revealed that the copolymer below LCST assembled in spherical micelles which subsequently transformed to unstable vesicles above the LCST. Heating these assemblies above 40 °C led to the precipitation of PCL‐b‐PNIPAAm block copolymer. Whereas, at decreased pH, micelles of PCL‐b‐PNIPAAm copolymer disintegrate due to the cleavage of acetal linkage and precipitation of hydrophobic hydroxyl‐terminated PCL. The encapsulated pyrene release kinetics from the micelles of synthesized PCL‐b‐PNIPAAm copolymer was found to be faster at higher temperature and at lower pH. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 1383–1396  相似文献   

13.
The syntheses of well‐defined 7‐arm and 21‐arm poly(N‐isopropylacrylamide) (PNIPAM) star polymers possessing β‐cyclodextrin (β‐CD) cores were achieved via the combination of atom transfer radical polymerization (ATRP) and click reactions. Heptakis(6‐deoxy‐6‐azido)‐β‐cyclodextrin and heptakis[2,3,6‐tri‐O‐(2‐azidopropionyl)]‐β‐cyclodextrin, β‐CD‐(N3)7 and β‐CD‐(N3)21, precursors were prepared and thoroughly characterized by nuclear magnetic resonance and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry. A series of alkynyl terminally functionalized PNIPAM (alkyne‐PNIPAM) linear precursors with varying degrees of polymerization (DP) were synthesized via atom transfer radical polymerization (ATRP) of N‐isopropylacrylamide using propargyl 2‐chloropropionate as the initiator. The subsequent click reactions of alkyne‐PNIPAM with β‐CD‐(N3)7 and β‐CD‐(N3)21 led to the facile preparation of well‐defined 7‐arm and 21‐arm star polymers, namely β‐CD‐(PNIPAM)7 and β‐CD‐(PNIPAM)21. The thermal phase transition behavior of 7‐arm and 21‐arm star polymers with varying molecular weights were examined by temperature‐dependent turbidity and micro‐differential scanning calorimetry, and the results were compared to those of linear PNIPAM precursors. The anchoring of PNIPAM chain terminal to β‐CD cores and high local chain density for star polymers contributed to their considerably lower critical phase separation temperatures (Tc) and enthalpy changes during phase transition as compared with that of linear precursors. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 404–419, 2009  相似文献   

14.
Summary: Novel temperature‐responsive poly(N‐isopropylacrylamide) (PNIPAAm) nanoparticle‐containing PNIPAAm hydrogels were prepared by radical polymerization. In comparison with conventional PNIPAAm hydrogels, the PNIPAAm gels thus prepared exhibit much faster response rates as the temperature is raised above the lower critical solution temperature. The improved properties are a result of the incorporation of PNIPAAm particles, which first shrink and then generate pores for water molecules to be quickly squeezed out of the bulky PNIPAAm gels.

Schematic illustration of the shrinking process: (I) First PNIPAAm particles shrink and generate pores; (II) the bulky gels then shrink further at a rapid rate.  相似文献   


15.
A series of thermoresponsive polymer gel electrolytes (PGEs) based on poly(N‐isopropylacrylamide) in aqueous potassium chloride was synthesized by radiation‐induced polymerization and gelation using γ rays from a 60Co source. The electric conductivity and swelling properties of the PGE were determined as a function of temperature. It was found that the electric conductivity of the PGE depended strongly on the swelling ratio; most notably, it changed drastically near the volume phase‐transition temperature of the PGE. The temperature/conductivity profile of the PGE exhibits a maximum peak at a certain temperature that is defined as the maximum conductivity temperature (Tmax). The Tmax of all of the PGEs prepared by low‐dose irradiation agreed with the temperature, near the end of the volume phase transition, where the PGE was completely shrunken. Consequently, the conductivity of gels should provide a good method with which the totally shrunken temperature of the thermoresponsive gels can be monitored with good temperature precision. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 134–141, 2002  相似文献   

16.
Novel AB2‐type amphiphilic block copolymers of poly(ethylene glycol) and poly(N‐isopropylacrylamide), PEG‐b‐(PNIPAM)2, were successfully synthesized through single‐electron transfer living radical polymerization (SET‐LRP). A difunctional macroinitiator was prepared by esterification of 2,2‐dichloroacetyl chloride with poly(ethylene glycol) monomethyl ether (PEG). The copolymers were obtained via the SET‐LRP of N‐isopropylacrylamide (NIPAM) with CuCl/tris(2‐(dimethylamino)ethyl)amine (Me6TREN) as catalytic system and DMF/H2O (v/v = 3:1) mixture as solvent. The resulting copolymers were characterized by gel permeation chromatography and 1H NMR. These block copolymers show controllable molecular weights and narrow molecular weight distributions (PDI < 1.15). Their phase transition temperatures and the corresponding enthalpy changes in aqueous solution were measured by differential scanning calorimetry. As a result, the phase transition temperature of PEG44b‐(PNIPAM55)2 is similar to that in the case of PEG44b‐PNIPAM110; however, the corresponding enthalpy change is much lower, indicating the significant influence of the macromolecular architecture on the phase transition. This is the first study into the effect of macromolecular architecture on the phase transition using AB2‐type amphiphilic block copolymer composed of PEG and PNIPAM. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4420–4427, 2009  相似文献   

17.
New amphiphilic gelators that contained both Schiff base and L ‐glutamide moieties, abbreviated as o‐SLG and p‐SLG, were synthesized and their self‐assembly in various organic solvents in the absence and presence of metal ions was investigated. Gelation test revealed that o‐SLG formed a thermotropic gel in many organic solvents, whilst p‐SLG did not. When metal ions, such as Cu2+, Zn2+, Mg2+, Ni2+, were added, different behaviors were observed. The addition of Cu2+ induced p‐SLG to from an organogel. In the case of o‐SLG, the addition of Cu2+ and Mg2+ ions maintained the gelating ability of the compound, whilst Zn2+ and Ni2+ ions destroyed the gel. In addition, the introduction of Cu2+ ions caused the nanofiber gel to perform a chiral twist, whilst the Mg2+ ions enhanced the fluorescence of the gel. More interestingly, the Mg2+‐ion‐mediated organogel showed differences in the fluorescence quenching by D ‐ and L ‐tartaric acid, thus showing a chiral recognition ability.  相似文献   

18.
The self‐assembly of NiCl2·6H2O with a diaminodiamide ligand 4,8‐diazaundecanediamide (L‐2,3,2) gave a [Ni(C9H20N4O2)(Cl)(H2O)] Cl·2H2O ( 1 ). The structure of 1 was characterized by single‐crystal X‐ray diffraction analysis. Structural data for 1 indicate that the Ni(II) is coordinated to two tertiary N atoms, two O atoms, one water and one chloride in a distorted octahedral geometry. Crystal data for 1: orthorhombic, space group P 21nb, a = 9.5796(3) Å, b = 12.3463(4) Å, c = 14.6305(5) Å, Z = 4. Through NH···Cl–Ni (H···Cl 2.42 Å, N···Cl 3.24 Å, NH···Cl 158°) and OH···Cl–Ni contacts (H···Cl 2.36 Å, O···Cl 3.08 Å, OH···Cl 143°), each cationic moiety [Ni(C9H20N4O2) (Cl)(H2O)]+ in 1 is linked to neighboring ones, producing a charged hydrogen‐bonded 1D chainlike structure. Thermogrametric analysis of compound 1 is consistent with the crystallographic observations. The electronic absorption spectrum of Ni(L‐2,3,2)2+ in aqueous solution shows four absorption bands, which are assigned to the 3A2g3T2g, 3T2g1Eg, 3T2g3T1g, and 3A2g3T1g transitions of triplet‐ground state, distorted octahedral nickel(II) complex. The cyclic volammetric measurement shows that Ni2+ is more easily reduced than Ni(L‐2,3,2)2+ in aqueous solution.  相似文献   

19.
Poly(n‐isopropylacrylamide) (PNIPAAm) and its nanocomposite with exfoliated montmorillonite (MMT) were prepared by soap‐free emulsion polymerization and individually applied to gel the electrolyte systems for the dye‐sensitized solar cells (DSSCs). Each exfoliated MMT nanoplatelet had a thickness of ~ 1 nm, carried ~ 1.8 cation/nm2, and acted like a two‐dimensional electrolyte. The DSSC with the LiI/I2/tertiary butylpyridine electrolyte system gelled by this polymer nanocomposite had higher short‐circuit current density (Jsc) compared to that gelled by the neat PNIPAAm. The former has a Jsc of 12.6 mA/cm2, an open circuit voltage (Voc) of 0.73 V, and a fill factor (FF) of 0.59, which harvested 5.4% electricity conversion efficiency (η) under AM 1.5 irradiation at 100 mW/cm2, whereas the latter has Jsc = 7.28 mA/cm2, Voc = 0.72 V, FF = 0.60, and η = 3.17%. IPCE of the nanocomposite‐gelled DSSC were also improved. Electrochemical impedance spectroscopy of the DSSCs revealed that the nanocomposite‐gelled electrolytes significantly decreased the impedances in three major electric current paths of DSSCs, that is, the resistance of electrolytes and electric contacts, impedance across the electrolytes/dye‐coated TiO2 interface, and Nernstian diffusion within the electrolytes. The results were also consistent with the increased molar conductivity of nanocomposite‐gelled electrolytes. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 47–53, 2008  相似文献   

20.
Poly(N‐isopropylacrylamide) (PNIPAAm) homopolymers synthesized by reversible addition–fragmentation chain transfer polymerization were used as macro‐chain‐transfer agents to synthesize smart amphiphilic block copolymers with a switchable hydrophilic–hydrophobic block of PNIPAAm and a hydrophilic block of poly(N‐dimethylacrylamide). All polymers were characterized by gel permeation chromatography, 1H NMR, and differential scanning calorimetry. The reversible micelles formed by the block copolymers of various compositions in aqueous solutions were characterized by 1H NMR, dynamic light scattering, and tensiometry. Micelles were observed in the aqueous solutions when the temperature was increased to 40 °C because of the collapse of the PNIPAAm structure, which led to a PNIPAAm hydrophobic block. The drug loading capacity was illustrated with the use of the solvatochromic Reichardt's dye and measured by ultraviolet–visible. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3643–3654, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号