首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Maghemite nanoparticles (MNPs) were synthesized by chemical coprecipitation and coated with meso-2,3-dimercaptosuccinic acid (HOOC-CH(SH)-CH(SH)-COOH or DMSA). The morphology and properties of the nanoparticles were characterized by TEM, XRD, Zeta Potential Analyzer and VSM. Subsequentially, the anti-human cardiac troponin I (cTnI) immunomagnetic nanoparticles (IMNPs) were prepared by grafting anti-human cTnI antibodies on the surface of DMSA-coated MNPs using the linker of EDC (1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride). The conjugation amount of the antibodies and the activity of IMNPs was evaluated by enzyme linked immunosorbent assay (ELISA) and Western blotting. The results show that the physical and chemical adsorption occurred at the same time, but the former was unstable and apt to desorb, and the maximum conjugation amount of antibody was about 96 μg on the 0.1 mg MNPs by covalent bond. The stability was also investigated, and after 300 days the antibodies on the IMNPs remained the biological activity.  相似文献   

2.
Guo H  He N  Ge S  Yang D  Zhang J 《Talanta》2005,68(1):61-66
An anodic stripping voltammetric method for the determination of cardiac troponin I (cTnI) at a MCM-41 mesoporous material modified carbon paste electrode (MCM-MCPE) was investigated. The test was based on the dual monoclonal antibody “sandwich” principle using colloidal gold as a labeled substrate. Four main steps were carried out to obtain the analytical signal, i.e. electrode preparation, immunoreaction, silver enhancement, and anodic stripping voltammetric detection. The anodic stripping peak current increased linearly with the concentration of cTnI over the range of 0.8-5.0 ng/ml. A detection limit of 0.5 ng/ml was obtained. The established method was applied to detect cTnI in acute myocardial infarction (AMI) samples using routine enzyme-linked immunoadsorbent assay (ELISA) for comparison analysis, and good results were obtained.  相似文献   

3.
Cationic ITP was used to separate and concentrate fluorescently tagged cardiac troponin I (cTnI) from two proteins with similar isoelectric properties in a PMMA straight‐channel microfluidic chip. In an initial set of experiments, cTnI was effectively separated from R‐Phycoerythrin using cationic ITP in a pH 8 buffer system. Then, a second set of experiments was conducted in which cTnI was separated from a serum contaminant, albumin. Each experiment took ~10 min or less at low electric field strengths (34 V/cm) and demonstrated that cationic ITP could be used as an on‐chip removal technique to isolate cTnI from albumin. In addition to the experimental work, a 1D numerical simulation of our cationic ITP experiments has been included to qualitatively validate experimental observations.  相似文献   

4.
Masson JF  Obando L  Beaudoin S  Booksh K 《Talanta》2004,62(5):865-870
A sensor to detect markers of cardiac muscle cell death at less than 3 ng ml−1 and in less than 10 min has been achieved. This fiber-optic-based surface plasmon resonance (SPR) sensor is being applied to detect myoglobin (MG) and cardiac troponin I (cTnI) in HEPES buffered saline solution. An in vivo sensor for the early detection of the onset of myocardial infarction (MI) will greatly enhance the patient care. MG and cTnI are two biological markers released from dying cardiac muscle cells during an MI, and their detection at biologically-relevant levels can be diagnostic of MI. Antibodies specific to an antigen of interest are attached to a carboxymethylated dextran layer on a gold SPR surface. With the method developed, the lower limit of detection (LOD) for MG is 2.9 ng ml−1 at 25 °C. The biological level for MG reaches 15-30 ng ml−1 in patient blood after myocardial damage. A Langmuir adsorption isotherm describes the binding well. For cTnI, a lower detection limit of 1.4 ng ml−1 was achieved in preliminary tests. cTnI levels are in the range of 1-3 ng ml−1 in patient blood after myocardial damage. The antibody reaction with the carboxymethylated dextran surface was optimized by modifying the reaction pH, the temperature, and the dextran chain length.  相似文献   

5.
The first ratiometric fluorescent reporter was designed for the detection of cardiac troponin I (cTnI), a key protein elicited during cardiac muscle cell death. In designing this abiotic fluorescent probe, docking simulation studies were performed to predict the probe/protein interactions along the solvent exposed regions of cTnI. Simple cuvette titration experiments in aqueous buffered solution indicate remarkable selectivity for cardiac troponin in the clinically relevant nM region versus skeletal troponin.  相似文献   

6.
In this study, we described a pH ELISA using synthetic melanin nanoparticles (SMNPs) for the co-immobilization of glucose oxidase and second antibody as signal labels, portable pH meter as signal readout device for detecting biomarker of myocardial injury. This assay is easy-to-use, portable, sensitive and able to realize point-of-care testing (POCT), which was demonstrated the signifi cant promising in the early diagnosis and screening of acute myocardial infarction.  相似文献   

7.
利用量子点良好的光谱特征和光化学稳定性, 结合免疫分析技术, 对心肌肌钙蛋白I(cTnI)特异性进行定量检测. 用量子点标记cTnI的单克隆抗体(2F11), 通过SDS-PAGE电泳证明标记成功. 斑点免疫膜渗滤法证明标记后的2F11仍具有良好的生物学活性, 再将标记并纯化后的2F11与NC膜上不同浓度的cTnI进行免疫反应, 使用ImageMaster图像分析软件对膜上荧光斑点图像进行定量分析. 应用此方法测得cTnI的浓度和斑点处相对荧光值有良好的线性关系(R2=0.9966), 最低检出值为120 ng.  相似文献   

8.
用表面等离子体子共振生物传感器构建对心肌肌钙蛋白I特异性的免疫传感器检测心肌肌钙蛋白I,并建立两种检测方法:直接法的最低检测限为2.5μg/L,基于传感膜上的夹心免疫法的灵敏度为0.5μg/L,检测范围为0.5~20μg/L,批内及批间精密度分别为3.5%~4.9%,6.1%~7.4%;用夹心法及国外试剂盒对40名健康献血者和20例急性心肌梗死患者血清心肌肌钙蛋白I水平进行检测,两者符合率为95%.  相似文献   

9.
Chemiluminescence immunoassay(CLⅠA) has always been a great challenge in detecting cardiac troponin Ⅰ(c Tn Ⅰ) in whole blood samples without centrifugation because of the interference of red blood cells and low sensitivity. Ⅰn this study, the antigens and erythrocytes in the blood were captured by the antibodies immobilized on the magnetic particles, recognized by another biotinconjugated c Tn Ⅰ antibody and detected by streptavidin/acridine aster-conjugated polychloromethylstyrene microspheres(...  相似文献   

10.
Protein array for assist diagnosis of acute myocardial infarction   总被引:2,自引:0,他引:2  
A nanogold probe immunoassay for cardiac troponin I (cTnI) combining the concepts of the one-step dual monoclonal antibody “sandwich” principle, the low density protein array, and silver enhancement on the gold particle is described. Two main substrates, namely the capture antibody (IgG1) coated supporting nitrocellulose membrane and the colloidal gold-labeled detection antibody (cAu–IgG2), were prepared before the detection. The detection procedure involved two steps, i.e. immunoreaction and silver amplification. The assay needs only small amounts of serum samples of patients. The detection results could be easily imaged with a simple flatbed scanner or even the naked eye. The whole detection procedure of the assay could be fulfilled within 40 min (much faster than the routine enzyme-linked immunosorbent assay (ELISA) that takes usually at least 3 h for a turnaround test). The detection limit of cTnI was found to be 1 ng/ml. The detecting results of cTnI in serum samples were similar to those detected by ELISA.  相似文献   

11.
IntroductionIn fast and slow skeletal and cardiac muscles,troponin I,the inhibitory protein of the troponin-tropomyosin complex,exists in three isotype formsencoded by three separated genes.The amino acidsequences of the two skeletal and one cardiac Tn Iforms( s Tn I and c Tn I,respectively) exhibit40 %dissimilarity[1] .Moreover,human cardiac Tn I has31 additional residues on the N - terminal end,which do not exist in skeletal forms,thus it pro-vides a high potential for obtaining cardiac-…  相似文献   

12.
Cardiac troponin I (cTnI) is an important regulatory protein in cardiac muscle, and its modification represents a key mechanism in the regulation of cardiac muscle contraction and relaxation. cTnI is often referred to as the “gold-standard” serum biomarker for diagnosing patients with acute cardiac injury since it is unique to the heart and released into the circulation following necrotic death of cardiac tissue. The swine (Sus scrofa) heart model is extremely valuable for cardiovascular research since the heart anatomy and coronary artery distribution of swine are almost identical to those of humans. Herein, we report a comprehensive characterization of the modifications in swine cTnI using top-down high-resolution tandem mass spectrometry in conjugation with immunoaffinity chromatography purification. High-resolution high accuracy mass spectrometry revealed that swine cTnI affinity purified from domestic pig hearts was N-terminally acetylated and phosphorylated. Electron capture disassociation is uniquely suited for localization of labile phosphorylations, which unambiguously identified Ser22/Ser23 as the only basally phosphorylated sites that are well-known to be regulated by protein kinase A and protein kinase C. Moreover, a combination of tandem mass spectrometry with sequence homology alignment effectively localized a single amino acid polymorphism, V116A, representing a novel genetic variant of swine cTnI. Overall, our studies demonstrated the unique power of top-down high-resolution tandem mass spectrometry in the characterization of protein modifications, including labile phosphorylation and unexpected sequence variants.  相似文献   

13.
This paper describes the detection of a cardiac biomarker, cardiac troponin I (cTnI), spiked into depleted human serum using cationic isotachophoresis (ITP) in a 3.9 cm long poly(methyl methacrylate) (PMMA) microfluidic channel. The microfluidic chip incorporates a 100× cross-sectional area reduction, including a 10× depth reduction and a 10× width reduction, to increase sensitivity during ITP. The cross-sectional area reductions in combination with ITP allowed visualization of lower concentrations of fluorescently labeled cTnI. ITP was performed in both "peak mode" and "plateau mode" and the final concentrations obtained were linear with initial cTnI concentration. We were able to detect and quantify cTnI at initial concentrations as low as 46 ng mL(-1) in the presence of human serum proteins and obtain cTnI concentrations factors as high as ~ 9000. In addition, preliminary ITP experiments including both labeled cTnI and labeled protein kinase A (PKA) phosphorylated cTnI were performed to visualize ITP migration of different phosphorylated forms of cTnI. The different phosphorylated states of cTnI formed distinct ITP zones between the leading and terminating electrolytes. To our knowledge, this is the first attempt at using ITP in a cascade microchip to quantify cTnI in human serum and detect different phosphorylated forms.  相似文献   

14.
合成了含双醛基的离子液体,此离子液体一端的醛基与修饰在电极表面的氨基发生共价键作用,将离子液体修饰在电极表面,另一端的醛基可用来固定抗体,构建电化学免疫传感器,实现对心肌肌钙蛋白I(cTnI)的检测。离子液体通过共价键作用固定在电极表面,不仅减少了从电极表面向检测溶液的渗透,提高传感器的稳定性,而且还可以直接固定抗体,不需要使用其他交联试剂;同时,离子液体可增强传感界面的导电性,提高传感器的灵敏度。在优化的实验条件下,传感器的线性范围为0.1~40 ng/mL,检出限为0.06 ng/mL。  相似文献   

15.
A novel molecularly imprinted polymer (MIP) sensor for rapid determination of cardiac troponin (cTnI) was established. Since it can bind to the template molecule cTnI specifically, it can be used to detect concentration of cTnI in serum without much sample pretreatment. What's more, the electrochemical signals depend on the concentration of template molecules. The synthetic sensor possesses advantages including simplicity, high specificity, low cost of preparation, good chemical and mechanical properties, sensitive and label‐free determination. The synthetic sensor shows good dynamic linearity at concentration range from 0.05 to 5.00 nM. The limit of detection (LOD) was found to be 0.027 nM. The detection time of whole process was within 5 minutes.  相似文献   

16.
This paper describes the preconcentration of the biomarker cardiac troponin I (cTnI) and a fluorescent protein (R-phycoerythrin) using cationic isotachophoresis (ITP) in a 3.9 cm long poly(methyl methacrylate) (PMMA) microfluidic chip. The microfluidic chip includes a channel with a 5× reduction in depth and a 10× reduction in width. Thus, the overall cross-sectional area decreases by 50× from inlet (anode) to outlet (cathode). The concentration is inversely proportional to the cross-sectional area so that as proteins migrate through the reductions, the concentrations increase proportionally. In addition, the proteins gain additional concentration by ITP. We observe that by performing ITP in a cross-sectional area reducing microfluidic chip we can attain concentration factors greater than 10,000. The starting concentration of cTnI was 2.3 μg mL?1 and the final concentration after ITP concentration in the microfluidic chip was 25.52 ± 1.25 mg mL?1. To the author's knowledge this is the first attempt at concentrating the cardiac biomarker cTnI by ITP. This experimental approach could be coupled to an immunoassay based technique and has the potential to lower limits of detection, increase sensitivity, and quantify different isolated cTnI phosphorylation states.  相似文献   

17.
Cardiovascular diseases (CVDs) are one of the foremost causes of mortality in intensive care units worldwide. The development of a rapid method to quantify cardiac troponin I (cTnI)—the gold-standard biomarker of myocardial infarction (MI) (or “heart attack”)—becomes crucial in the early diagnosis and treatment of myocardial infarction (MI). This study investigates the development of an efficient fluorescent “sandwich” immunoassay using liposome-based fluorescent signal amplification and thereby enables the sensing and quantification of serum-cTnI at a concentration relevant to clinical settings. The calcein-loaded liposomes were utilized as fluorescent nano vehicles, and these have exhibited appropriate stability and efficient fluorescent properties. The standardized assay was sensitive and selective towards cTnI in both physiological buffer solutions and spiked human serum samples. The novel assay presented noble analytical results with sound dynamic linearity over a wide concentration range of 0 to 320 ng/mL and a detection limit of 6.5 ng/mL for cTnI in the spiked human serum.  相似文献   

18.
量子点偶联抗体型夹心免疫传感法检测心肌肌钙蛋白I   总被引:3,自引:1,他引:2  
将纳米量子点(QD)的放大作用与夹心免疫传感技术相结合, 首次应用量子点标记抗体和表面等离子体共振生物传感器(SPR)对心肌肌钙蛋白I(cTn I)进行特异性定量检测. 利用N-羟基琥珀酰(NHS)和1-乙基-3-(3-二甲氨基丙基)碳二亚胺盐酸盐(EDC)将量子点偶联到cTn I的单克隆抗体2F11上, 再利用SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)验证偶联是否成功, 膜印迹法证明标记后的2F11具有良好的生物学和免疫学活性, 最后以蛋白A为基底膜、特异性抗心肌肌钙蛋白I多克隆抗体为第一抗体(捕捉抗体)、QD标记的抗心肌肌钙蛋白I单克隆抗体2F11为第二抗体(检测抗体), 用表面等离子体共振生物传感器构建了对心肌肌钙蛋白I具有特异性的夹心免疫传感法, 并成功用于检测心肌肌钙蛋白I. 本法的检测范围为0.4~15 μg/L, 检出限为0.4 μg/L, 较未标记夹心法和直接法分别提高了约2倍和10倍.  相似文献   

19.
We report lithium ion intercalation mediated efficient exfoliation of graphite to form monolithic graphene sheets which have subsequently been investigated for the development of highly sensitive label-free electrochemical detection platform for cardiac biomarker, Troponin I (cTnI). The spectroscopic and morphological analysis demonstrated the formation of defect free graphene sheets which were successfully employed to fabricate an inter-digited microdevice in a drain-source configuration on a silicon biochip. The graphene gated biochip functionalized with anti-cTnI antibodies used in label free detection of cTnI which exhibited an excellent sensitivity in the picogram range (∼1 pg mL−1) for cTnI without the use of any enzymatic amplification that promises its potential applicability for bio-molecular detection in clinical diagnosis.  相似文献   

20.
采用高效化学发光试剂3-(2'-螺旋金刚烷)-4-甲氧基-4-(3"-羟基)苯-1,2-二氧杂环丁烷磷酸(AMPPD)作为检测底物, 并将传统的ELISA两步双抗夹心法改为一步法, 得到了高灵敏测定人血清中心肌肌钙蛋白I(cTnI)的化学发光酶免疫分析优化条件. 采用单因素变化法和方阵滴定法得到的最佳实验条件为: 捕获抗体包被浓度为10.0 μg/mL, 以pH=7.0的PBS作为免疫反应缓冲底液, 以含质量分数为1.0%的BSA pH=9.6的碳酸盐溶液缓冲液, 于4 ℃封闭过夜, 生物素-检测抗体(Biotin-IgG2)以及碱性磷酸酶-亲和素(ALP-Avidin)结合物均采用1:2000稀释度, 免疫反应条件为37 ℃, 孵育时间60 min, 以去离子水作为洗涤剂, 以1:100稀释的AMPPD作为发光反应底物, 发光反应时间10 min(37 ℃). 检出限为0.02 ng/mL, 比现行ELISA法灵敏度提高一个数量级; 测定周期约75 min, 比两步法ELISA快得多; 线性范围(0.04~36.20 ng/mL)比ELISA法扩宽了两个数量级; 加标回收率97.5%~102.8%, 对标准样品的测定结果与用ELISA法的测定结果吻合; 重复性好, 3个样品批内变异系数均小于8.5%(n=12).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号