首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gramicidin A is a natural peptide, which shows high antimicrobial activity to Gram‐positive bacteria. However, the hemolytic toxicity prevents its therapeutic usage. We demonstrated that by simply removing the formyl group at the N terminus, the hemolytic toxicity of the peptide could be obviously decreased. The deformylated gramicidin A ( 1 ) could efficiently insert into the lipid bilayer to form transmembrane channels. The peptide can also selectively insert into the membrane of Gram‐positive bacteria but not that of erythrocytes, leading to its high antimicrobial activity and very low hemolytic toxicity. The derivation of 1 could be achieved by decoration at the terminal NH2 group, which also produced peptides showing high activity and low hemolytic toxicity. This derivation method provided us with an efficient strategy to build a library for future activity and cytotoxicity screening in vitro and in vivo.  相似文献   

2.
In this study, antimicrobial membranes based on biodegradable material poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) [P(3HB‐4HB)] and quaternary ammonium salts (QASs) by two methods have been performed. Three QASs with varied alkyl chain lengths have been synthesized successfully and characterized by 1H nuclear magnetic resonance and Fourier transform infrared. The synthesized QASs were blended with P(3HB‐4HB) and electrospun into composite fibrous membranes or casted into conventional membranes. Electrospun fibrous membranes with large surface areas are a superior type of antimicrobial biomaterials, and they exhibit preferable properties than solution casting membranes. Specifically, electrospun fibrous membranes are tougher and can inactivate both Gram‐positive Staphylococcus aureus and Gram‐negative Escherichia coli O157:H7 in a contact time of 30 min, whereas the solution casting membranes cannot. The length of alkyl chain in the quaternary ammonium groups on the modified P(3HB‐4HB) membranes is able to influence the antimicrobial activity. This type of antimicrobial material may have potential applications in biomaterial field. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
Immobilization of photosensitizers in polymers opens prospects for their continuous and reusable application. Methylene blue (MB) and Rose Bengal were immobilized in polystyrene by mixing solutions of the photosensitizers in chloroform with a polymer solution, followed by air evaporation of the solvent. This procedure yielded 15–140 μm polymer films with a porous surface structure. The method chosen for immobilization ensured 99% enclosure of the photosensitizer in the polymer. The antimicrobial activity of the immobilized photosensitizers was tested against Gram‐positive and Gram‐negative bacteria. It was found that both immobilized photosensitizers exhibited high antimicrobial properties, and caused by a 1.5–3 log10 reduction in the bacterial concentrations to their total eradication. The bactericidal effect of the immobilized photosensitizers depended on the cell concentration and on the illumination conditions. Scanning electron microscopy was used to prove that immobilized photosensitizers excited by white light caused irreversible damage to microbial cells. Photosensitizers immobilized on a solid phase can be applied for continuous disinfection of wastewater bacteria.  相似文献   

4.
We have investigated how doubly selective synthetic mimics of antimicrobial peptides (SMAMPs), which can differentiate not only between bacteria and mammalian cells, but also between Gram‐negative and Gram‐positive bacteria, make the latter distinction. By dye‐leakage experiments on model vesicles and complementary experiments on bacteria, we were able to relate the Gram selectivity to structural differences of these bacteria types. We showed that the double membrane of E. coli rather than the difference in lipid composition between E. coli and S. aureus was responsible for Gram selectivity. The molecular‐weight‐dependent antimicrobial activity of the SMAMPs was shown to be a sieving effect: while the 3000 g mol?1 SMAMP was able to penetrate the peptidoglycan layer of the Gram‐positive S. aureus bacteria, the 50000 g mol?1 SMAMP got stuck and consequently did not have antimicrobial activity.  相似文献   

5.
《中国化学会会志》2017,64(8):918-924
We report herein one‐pot synthesis and the antibacterial and antitubercular activities of 2,5‐disubstituted‐1,3,4‐oxadiazole compounds obtained by hybridization of a well‐known antitubercular agent isoniazid (INH ) with four broad‐spectrum antibiotics belonging to fluoroquinolone (FQ ) class. The work is aimed at designing and developing potential antimicrobial agents having synergistic action due to the coupling of INH and FQ through the biologically active 1,3,4‐oxadiazole nucleus. The synthesized compounds are expected to have low toxicity as compared to INH due to the absence of free hydrazide group in the chemical structure of the prepared derivatives. The antibacterial activities of the 1,3,4 oxadiazole derivatives were also tested against several Gram‐positive and Gram‐negative pathogenic bacterial strains. The antitubercular activity was evaluated against M. tuberculosis H37Rv strain, and the results were compared with that of the positive control INH . The title compounds showed excellent antimicrobial and promising antitubercular activity in comparison to the parent fluoroquinolones and INH , respectively.  相似文献   

6.
In the present study, 2‐chloro‐3′,4′‐dihydroxyacetophenone (CCDP), a catechol derivative, was quaternized with poly(propylene oxide)‐g‐poly(dimethylaminoethyl methacrylate) (PPO‐g‐PDMA, PgP) to prepare surface coatings for various substrates. The surfaces of noble metals, oxides, and synthetic polymers were coated by immersion in an aqueous solution of CCDP quaternized with PgP (C‐PgP). The catechol functional groups that remained on the surface were used for deposition of Ag nanoparticles (AgNPs) on the coated surface, to provide a water‐resistant antibacterial polymer with long‐term antimicrobial activity. X‐ray photoelectron spectroscopy confirmed deposition of C‐PgP and AgNPs on the surface coated with the antibacterial polymer. Surface‐immobilized C‐PgP/AgNPs showed outstanding antibacterial activities against Staphylococcus aureus, a Gram‐positive bacterium, and Escherichia coli, a Gram‐negative bacterium. C‐PgP/AgNPs can be applied to a variety of substrates and can therefore be used as antibacterial materials in various fields. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Thiostrepton is a potent antibiotic against a broad range of Gram‐positive bacteria, but its medical applications have been limited by its poor aqueous solubility. In this work, the first C(sp2)?H amidation of dehydroalanine (Dha) residues was applied to the site selective modification of thiostrepton to prepare a variety of derivatives. Unlike all prior methods for the modification of thiostrepton, the alkene framework of the Dha residue is preserved and with complete selectivity for the Z‐stereoisomer. Additionally, an aldehyde group was introduced by C?H amidation, enabling oxime ligation for the installation of an even greater range of functionality. The thiostrepton derivatives generally maintain antimicrobial activity, and importantly, eight of the derivatives displayed improved aqueous solubility (up to 28‐fold), thereby addressing a key shortcoming of this antibiotic. The exceptional functional group compatibility and site selectivity of CoIII‐catalyzed C(sp2)?H Dha amidation suggests that this approach could be generalized to other natural products and biopolymers containing Dha residues.  相似文献   

8.
《化学:亚洲杂志》2017,12(24):3150-3155
There is significant interest in the development of a sustainable and integrated process for the extraction of essential oils and separation of biopolymers by using novel and efficient solvent systems. Herein, cassia essential oil enriched in coumarin is extracted from Cinnamomum cassia bark by using a protic ionic liquid (IL), ethylammonium nitrate (EAN), through dissolution and the creation of a biphasic system with the help of diethyl ether. The process has been perfected, in terms of higher biomass dissolution ability and essential oil yield through the addition of aprotic ILs (based on the 1‐butyl‐3‐methylimidazolium (C4mim) cation and chloride or acetate anions) to EAN. After extraction of oil, cellulose‐rich material and free lignin were regenerated from biomass–IL solutions by using a 1:1 mixture of acetone–water. The purity of the extracted essential oil and biopolymers were ascertained by means of FTIR spectroscopy, NMR spectroscopy, and GC‐MS techniques. Because lignin contains UV‐blocking chromophores, the oil‐free residual lignocellulosic material has been directly utilized to construct UV‐light‐resistant composite materials in conjunction with the biopolymer chitosan. Composite material thus obtained was processed to form biodegradable films, which were characterized for mechanical and optical properties. The films showed excellent UV‐light resistance and mechanical properties, thereby making it a material suitable for packaging and light‐sensitive applications.  相似文献   

9.
Antimicrobial active films based on poly(lactic acid) (PLA) were prepared with poly(ε‐caprolactone) (PCL) and thymol (0, 3, 6, 9, and 12 wt%) by solvent casting methods. The films were characterized by thermal, structural, mechanical, gas barrier, and antimicrobial properties. Scanning electron microscopy analysis revealed that the surface of film became rougher with certain porosity when thymol was incorporated into the PLA/PCL blends. Thymol acted as plasticizers, which reduce the intermolecular forces of polymer chains, thus improving the flexibility and extensibility of the films. The addition of PCL into the pure PLA film decreased the glass transition temperature of the films. The presence of thymol decreased the crystallinity of PLA phase, but did not affect the thermal stability of films. Water vapor barrier properties of films slightly decreased with the increase of thymol loading. The antimicrobial properties of thymol containing films showed a significant activity against Escherichia coli and Listeria monocytogenes. The results indicated the potential of PLA/PCL/thymol composites for applications in antimicrobial packaging. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Dibenzothiazolyldibenzo‐18‐crown‐6‐ether was designed and synthesized by formylation of dibenzo‐18‐crown‐6‐ether followed by condensation with 2‐aminothiophenol. A simple and rapid UV‐Visible spectrophotometric method is developed for detection of trace of palladium ions. Furthermore it was assessed for antimicrobial activity against bacterial strains Staphylococcus aureus (Gram+ve), Escherichia coli (Gram−ve) as well as fungal strains Aspergillus niger and Candida albicans respectively.  相似文献   

11.
A series of 1,2‐dihydroquinoxaline‐3‐yl‐3‐substitutedphenyl‐1H‐pyrazole‐4‐carbaldehyde were synthesized and evaluated for their antimicrobial activity against two Gram‐positive and two Gram‐negative organisms and two fungal organisms. The study has shown that pyrazole‐4‐carbaldehyde‐incorporated quinoxaline was essential for activity. Among the compounds, 5a , 5c , 5d had shown significant activity against all selected strains when compared with control. These compounds may prove useful as antimicrobial agents.  相似文献   

12.
In this present study, biodegradable PBAT nanocomposites containing different weight percentages (1, 3, 5, 7, and 10% w/w) of TiO2 nanoparticles were prepared by using solvent casting technique, chloroform as a solvent. The microstructure and morphology of the as‐synthesized poly(butylene adipate‐co‐terephthalate) (PBAT)/TiO2 nanocomposite films were characterized by Fourier‐transform infrared, X‐ray diffraction, scanning electron microscopy, and transmission electron microscope. The thermal degradation of PBAT composites was studied by using thermogravimetric analysis. The mechanical strength of the films was improved by increasing TiO2 concentration. Tensile strength increased from 32.60 to 63.26 MPa, respectively. Barrier properties of the PBAT/TiO2 nanocomposites were investigated by using an oxygen permeability tester. The oxygen permeability (oxygen transmission rate) decreased with increasing the TiO2 nanoparticle concentrations. The PBAT/TiO2 nanocomposite films showed profound antimicrobial activity against both Gram‐positive and Gram‐negative foodborne pathogenic bacteria, namely, Escherichia coli and Staphylococcus aureus, to understand to the zone of inhibition. These results indicated that filler–polymer interaction is important and the role of the TiO2 as a reinforcement in the nanocomposites was evident. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
Summary: This work reports a new type of poly(ε‐caprolactone) (PCL) robust hollow sphere with controllable biodegradability, produced by grafting PCL shells from the surface of silica sphere cores and removing the template cores. Bis(ε‐caprolactone‐4‐yl) (BCY) composed of two ε‐caprolactone molecules was used as the crosslinker, which not only greatly strengthened the PCL hollow spheres but also brought hardly any non‐biodegradable component into the system. Solubility experiments and biodegradation tests show that the crosslinked PCL hollow spheres were robust both in water and acetone, and were completely biodegradable with characteristics of controllable biodegradability according to the content of the BCY. The Rhodamine release test indicated that the release rate of encapsulated drugs in the PCL hollow spheres was controlled by diffusion and the biodegradability of the PCL molecules, and the latter mechanism will dominate when more enzymes are involved.

Reaction scheme for synthesis of linear and crosslinked hollow poly(ε‐caprolactone) spheres.  相似文献   


14.
Novel ABA and star amphiphilic block copolymers of poly(vinyl sugars) with biodegradable hydrophobic poly(ε‐caprolactone) segments are presented. They were prepared by a combination of ring‐opening polymerization of ε‐caprolactone and atom‐transfer radical polymerization of methacrylate‐bearing isopropylidene‐protected galactose. Subsequently, the protecting groups of the sugar fragments were removed by treatment with 80% formic acid.  相似文献   

15.
A novel series of 4‐(4‐(1‐benzyl‐1H‐1,2,3‐triazol‐4‐yl)phenyl)‐2‐substitutedthiazole derivatives ( 8a‐l) have been synthesized by [3 + 2] cycloaddition reaction of 4‐(4‐ethynylphenyl)‐2‐substitutedthiazole with substituted benzyl azide in aqueous DMF. Starting compounds 4‐(4‐ethynylphenyl)‐2‐substitutedthiazole ( 6a‐d ) were synthesized by reaction of 4‐(2‐substitutedthiazol‐4‐yl)benzaldehyde with Ohira‐Bestmann reagent in methanol. The structures of these novel triazole‐thiazole clubbed derivatives were confirmed by the spectral analysis. The title compounds ( 8a‐l ) were tested for antimycobacterial activity against Mycobacterium tuberculosis H37Ra active and dormant (MTB, ATCC 25177) and antimicrobial activity against standard Gram‐positive bacteria, Staphylococcus aureus (NCIM 2602) and Bacillus subtilis (NCIM 2162), and Gram‐negative bacteria, Escherichia coli (NCIM 2576) and Pseudomonas flurescence (NCIM 2059). Compounds 8a , 8b , 8c , and 8h reported good activity against B subtilis, compounds 8a , 8b , and 8c showed good activity against S aureus, and compound 8b showed good activity against dormant M tuberculosis H37Rv strain. Compounds 8b and 8c found more potent against Gram positive and dormant M tuberculosis H37Rv strains. These novel triazole‐thiazole clubbed analogues found to be a capable leads for further optimization and development.  相似文献   

16.
Telechelic antimicrobial poly(2‐oxazoline)s with quaternary ammonium (quat) end groups are shown to be potent antimicrobial polymers against Gram‐positive bacterial strains. In this study, the activity against the Gram‐negative bacterium Escherichia coli is additionally implemented by hydrolyzing the poly(2‐methyl‐2‐oxazoline) with two quart end groups to poly(ethylene imine) (PEI). The resulting telechelic polycations are active against Staphylococcus aureus and E. coli. The contribution of the PEI backbone is determined by measuring the antimicrobial activity in the presence of calcium ions. The influence of PEI on the overall activity strongly depends on the molecular weight and increases with higher mass. The PEI dominates the activity against E. coli at lower masses than against S. aureus. The quart end groups require an alkyl substituent of dodecyl or longer to dominate the antimicrobial activity. Additionally, PEI and quart end groups act synergistically.  相似文献   

17.
A facile method has been developed for the large‐scale synthesis of random copolypeptides composed of multiple (i.e., cationic, hydrophobic, and hydrophilic) amino acids and their relative ratios have been optimized for broad‐spectrum antibacterial effect. The copolypeptides obtained have measured compositions close to the design ratios in spite of the differing reactivities of the different amino acids. An optimized random copolypeptide of lysine, leucine, and serine (denoted as KLS‐3) mimicking the composition of LL‐37 host defense peptide gives broad spectrum antibacterial activity against clinically relevant Gram‐negative and Gram‐positive bacteria such as methicillin‐resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa (PAO1) with minimum inhibitory concentrations (MICs) of 32–64 μg mL−1, as well as good MICs against multidrug resistant Gram‐negative bacteria of Escherichia coli EC 958 (64 μg mL−1) and Klebseilla pneumoniae PTR3 (128 μg mL−1). This method can be applied to the facile large‐scale copolymerization of multiple amino acids, including unnatural amino acids, to make effective antibacterial copolypeptides.

  相似文献   


18.
E. coli and Salmonella are two of the most common bacterial pathogens involved in foodborne and waterborne related deaths. Hence, it is critical to develop rapid and sensitive detection strategies for near‐outbreak applications. Reported is a simple and specific assay to detect as low as 1 CFU mL?1 of E. coli in water within 6 hours by targeting the bacteria's surface protease activity. The assay relies on polythiophene acetic acid (PTAA) as an optical reporter and a short unlabeled peptide (LL37FRRV) previously optimized as a substrate for OmpT, an outer‐membrane protease on E. coli. LL37FRRV interacts with PTAA to enhance its fluorescence while also inducing the formation of a helical PTAA‐LL37FRRV construct, as confirmed by circular dichroism. However, in the presence of E. coli LL37FRRV is cleaved and can no longer affect the conformations and optical properties of PTAA. This ability to distinguish between an intact and cleaved peptide was investigated in detail using LL37FRRV sequence variants.  相似文献   

19.
Poly(ε‐caprolactone)‐grafted‐lignin (PCL‐g‐lignin) copolymers with 2 to 37 wt % lignin are employed to study the effect of lignin on the morphology, nucleation, and crystallization kinetics of PCL. Lignin displays a nucleating action on PCL chains originating an intersecting lamellar morphology. Lignin is an excellent nucleating agent for PCL at low contents (2–5 wt %) with nucleation efficiency values that are close to or >100%. This nucleating effect increases the crystallization and melting temperature of PCL under nonisothermal conditions and accelerates the overall isothermal crystallization rate of PCL. At lignin contents >18 wt %, antinucleation effects appear, that decrease crystallization and melting temperatures, reduce crystallinity degree, hinder annealing during thermal fractionation and significantly retard isothermal crystallization kinetics. The results can be explained by a competition between nucleating effects and intermolecular interactions caused by hydrogen bonding between PCL and lignin building blocks. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1736–1750  相似文献   

20.
The effect of di‐N‐methylation of bacterial membrane disruptors derived from aminoglycosides (AGs) on antimicrobial activity is reported. Di‐N‐methylation of cationic amphiphiles derived from several diversely structured AGs resulted in a significant increase in hydrophobicity compared to the parent compounds that improved their interactions with membrane lipids. The modification led to an enhancement in antibacterial activity and a broader antimicrobial spectrum. While the parent compounds were either modestly active or inactive against Gram‐negative pathogens, the corresponding di‐N‐methylated compounds were potent against the tested Gram‐negative as well as Gram‐positive bacterial strains. The reported modification offers a robust strategy for the development of broad‐spectrum membrane‐disrupting antibiotics for topical use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号