首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The milk of the one‐humped camel (Camelus dromedarius) reportedly offers medicinal benefits, perhaps because of its unique bioactive components. Milk proteins were determined by (1) two‐dimensional gel electrophoresis and peptide mass mapping and (2) liquid chromatography–tandem mass spectrometry (LC–MS/MS) following one‐dimensional polyacrylamide gel electrophoresis. Over 200 proteins were identified: some known camel proteins including heavy‐chain immunoglobulins and others exhibiting regions of exact homology with proteins from other species. Indigenous peptides were also identified following isolation and concentration by two strategies: (1) gel‐eluted liquid fraction entrapment electrophoresis and (2) small‐scale electrophoretic separation. Extracts were analyzed by LC–MS/MS and peptides identified by matching strategies, by de novo sequencing and by applying a sequence tag tool requiring similarity to the proposed sequence, but not an exact match. A plethora of protein cleavage products including some novel peptides were characterized. These studies demonstrate that camel milk is a rich source of peptides, some of which may serve as nutraceuticals. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
We report on the characterization by mass spectrometry (MS) of a rapid, reagentless and site-specific cleavage at the N-terminus of the amino acid cysteine (C) in peptides and proteins induced by the thermal decomposition at 220–250 °C for 10 s in solid samples. This thermally induced cleavage at C occurs under the same conditions and simultaneously to our previously reported thermally induced site-specific cleavage at the C-terminus of aspartic acid (D) (Zhang, S.; Basile, F. J. Proteome Res. 2007, 6, (5), 1700–1704). The C cleavage proceeds through cleavage of the nitrogen and α–carbon bond (N-terminus) of cysteine and produces modifications at the cleavage site with an amidation (−1 Da) of the N-terminal thermal decomposition product and a −32 Da mass change of the C-terminal thermal decomposition product, the latter yielding either an alanine or β-alanine residue at the N-terminus site. These modifications were confirmed by off-line thermal decomposition electrospray ionization (ESI)-MS, tandem MS (MS/MS) analyses and accurate mass measurements of standard peptides. Molecular oxygen was found to be required for the thermal decomposition and cleavage at C as it induced an initial cysteine thiol side chain oxidation to sulfinic acid. Similar to the thermally induced D cleavage, missed cleavages at C were also observed. The combined thermally induced digestion process at D and C, termed thermal decomposition/digestion (TDD), was observed on several model proteins tested under ambient conditions and the site-specificity of the method confirmed by MS/MS.  相似文献   

3.
An extracellular collagenolytic serine protease was purified from Aspergillus sp., isolated from the Caatinga biome in northeast Brazil by a two‐step chromatographic procedure, using an anion‐exchanger and gel filtration. The enzyme was produced by submerged fermentation of feather residue as a substrate. The purified collagenase showed a 2.09‐fold increase in specific activity and 22.85% yield. The enzyme was a monomeric protein with a molecular mass of 28.7 kDa, estimated by an SDS–PAGE and AKTA system. The optimum temperature and pH for enzyme activity were around 40°C and pH 8.0, respectively. The enzyme was strongly inhibited by phenyl‐methylsulfonyl fluoride, a serine protease inhibitor, and was thermostable until 65°C for 1 h. We then evaluated the enzyme's potential for degradation of Type I and Type V collagens for producing peptides with antifungal activity. Our results revealed that the cleavage of Type V collagen yielded more effective peptides than Type I, inhibiting growth of Aspergillus terreus , Aspergillus japonicus and Aspergillus parasiticus . Both groups of peptides (Type I and Type V) were identified by SDS–PAGE. To conclude, the thermostable collagenase we purified in this study has various potentially useful applications in the fields of biochemistry, biotechnology and biomedical sciences.  相似文献   

4.
Cysteine proteases represent a broad class of proteolytic enzymes widely distributed among living organisms. Although well known as typical lysosomal enzymes, cysteine proteases are actually recognized as multi-function enzymes, being involved in antigen processing and presentation, in membrane-bound protein cleavage, as well as in degradation of the cellular matrix and in processes of tissue remodeling. Very recently, it has been shown that the NO(-donor)-mediated chemical modification of the Cys catalytic residue of cysteine proteases, including Coxsackievirus and Rhinovirus cysteine proteases, cruzain, Leishmania infantum cysteine protease, falcipain, papain, as well as mammalian caspases, cathepsins and calpain, blocks the enzyme activity in vitro and in vivo. Here, inhibition of representative cysteine proteases by NO(-donors) is reviewed.  相似文献   

5.
Two cysteine‐specific modifiers we reported previously, N‐ethyl maleimide (NEM) and iodoacetanilide (IAA), have been applied to the labeling of cysteine residues of peptides for the purpose of examining the enhancement of ionization efficiencies in combination with matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI TOF MS). The peak intensities of the peptides as a result of modification with these modifiers were compared with the peak intensities of peptides modified with a commercially available cysteine‐specific modifier, iodoacetamide (IA). Our experiments show significant enhancement in the peak intensities of three cysteine‐containing synthetic peptides modified with IAA compared to those modified with IA. The results showed a 4.5–6‐fold increase as a result of modification with IAA compared to modification with IA. Furthermore, it was found that IAA modification also significantly enhanced the peak intensities of many peptides of a commercially available proteins, bovine serum albumin (BSA), compared to those modified with IA. This significant enhancement helped identify a greater number of peptides of these proteins, leading to a higher sequence coverage with greater confidence scores in identification of proteins with the use of IAA. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Analogous to reversible post‐translational protein modifications, the ability to attach and subsequently remove modifications on proteins would be valuable for protein and biological research. Although bioorthogonal functionalities have been developed to conjugate or cleave protein modifications, they are introduced into proteins on separate residues and often with bulky side chains, limiting their use to one type of control and primarily protein surface. Here we achieved dual control on one residue by genetically encoding S‐propargyl‐cysteine (SprC), which has bioorthogonal alkyne and propargyl groups in a compact structure, permitting usage in protein interior in addition to surface. We demonstrated its incorporation at the dimer interface of glutathione transferase for in vivo crosslinking via thiol–yne click chemistry, and at the active site of human rhinovirus 3C protease for masking and then turning on enzyme activity via Pd‐cleavage of SprC into Cys. In addition, we installed biotin onto EGFP via Sonogashira coupling of SprC and then tracelessly removed it via Pd cleavage. SprC is small in size, commercially available, nontoxic, and allows for bond building and breaking on a single residue. Genetically encoded SprC will be valuable for chemically controlling proteins with an essential Cys and for reversible protein modifications.  相似文献   

7.
SDS‐PAGE is still one of the most widespread separation techniques in proteomic research and usually coupled to subsequent MS measurement for protein identification. The proteins are digested while embedded in the gel matrix. The resultant peptides are eluted out of the gel and finally analyzed. The in‐gel digestion process suffers from several drawbacks which influence the experimental outcome with respect to protein sequence coverage and detection sensitivity. Limited accessibility of the protease to the substrate protein and insufficient peptide extraction represent the two major problems. To specifically target these issues, we established a novel partly reversible gel system, in which the gel matrix can be conditionally cleaved to increase the pore diameters. By using a crosslinker mixture consisting of Bis and ethylene‐glycol‐diacrylate the acrylamide filament interconnections can be partly hydrolyzed in alkaline solution. The new hybrid gels have been tested to be compatible with a variety of acidic staining techniques. They exhibit similar electrophoretic performance compared with regular solely Bis‐based gels, but yield significantly better MS results. Thus, the Bis/ethylene‐glycol‐diacrylate SDS‐PAGE gel system is a promising alternative for MS‐based in‐gel workflows and might be transferred to other gel‐electrophoretic applications.  相似文献   

8.
Two peptides (MW 1211.7 and 928.5 Da) were detected by RP–HPLC–ESI–MS analysis of parotid saliva secreted upon continuous parasympathetic stimulation. The peptide with the higher mass (PSPFr‐A) corresponded to the N‐terminal dodecapeptide (Fragment 1–12) of rat parotid secretory protein (PSP), while the peptide with the lower mass (PSPFr‐B) corresponded to the 4–12 fragment of the same protein. During stimulation, the PSPFr‐A secretion increased, while the PSPFr‐B secretion decreased (HPLC–ESI–MS). In the presence of cycloheximide, PSPFr‐A was not demonstrated, while the PSPFr‐B secretion decreased. In the presence of aprotinin, the PSPFr‐B secretion was almost abolished, while the PSPFr‐A secretion increased to higher levels than those observed in the absence of the inhibitor. In vitro perfusion, with artificial solution, of stimulated rat parotid glands excluded that the fragments were derived from the circulation. Neither peptide occurred in enriched granule preparations from unstimulated glands. The results suggest that at least two pathways – granular and vesicular – are responsible for the generation of the two peptides. PSPFr‐A is the first cleavage product in both pathways. PRPFr‐B is probably generated from granular PSPFr‐A only and, at the end of the granule mediated pathway, by the action of an enzyme of the serine protease class.  相似文献   

9.
Superior to linear peptides in biological activities, cyclic peptides are considered to have great potential as therapeutic agents. To identify cyclic‐peptide ligands for therapeutic targets, phage‐displayed peptide libraries in which cyclization is achieved by the covalent conjugation of cysteines have been widely used. To resolve drawbacks related to cysteine conjugation, we have invented a phage‐display technique in which its displayed peptides are cyclized through a proximity‐driven Michael addition reaction between a cysteine and an amber‐codon‐encoded N?‐acryloyl‐lysine (AcrK). Using a randomized 6‐mer library in which peptides were cyclized at two ends through a cysteine–AcrK linker, we demonstrated the successful selection of potent ligands for TEV protease and HDAC8. All selected cyclic peptide ligands showed 4‐ to 6‐fold stronger affinity to their protein targets than their linear counterparts. We believe this approach will find broad applications in drug discovery.  相似文献   

10.
Superior to linear peptides in biological activities, cyclic peptides are considered to have great potential as therapeutic agents. To identify cyclic‐peptide ligands for therapeutic targets, phage‐displayed peptide libraries in which cyclization is achieved by the covalent conjugation of cysteines have been widely used. To resolve drawbacks related to cysteine conjugation, we have invented a phage‐display technique in which its displayed peptides are cyclized through a proximity‐driven Michael addition reaction between a cysteine and an amber‐codon‐encoded N?‐acryloyl‐lysine (AcrK). Using a randomized 6‐mer library in which peptides were cyclized at two ends through a cysteine–AcrK linker, we demonstrated the successful selection of potent ligands for TEV protease and HDAC8. All selected cyclic peptide ligands showed 4‐ to 6‐fold stronger affinity to their protein targets than their linear counterparts. We believe this approach will find broad applications in drug discovery.  相似文献   

11.
We describe a method for probing surface‐exposed cysteines in proteins by selective labeling with p‐hydroxymercuribenzoate (PMB) combined with nano‐electrospray ionization mass spectrometric analysis (nanoESI‐MS). The rapid, stoichiometric, and specific labeling by PMB of surface‐exposed cysteines allows for characterization of the accessibility of the cysteines using a single MS analysis. Moreover, by taking advantage of the large mass shift of 321 Da, unique isotopic pattern, and enhanced MS signal of PMB‐labeled cysteine‐containing peptide fragments, the surface‐exposed cysteines in proteins can be accurately identified by peptide mapping. The number and sites of reactive cysteines on the surface of human and rat hemoglobins (hHb and rHb) were identified as examples. Collision‐induced dissociation tandem mass spectrometric (MS/MS) analysis of specific peptides further confirmed the selective labeling of PMB in hHb. The subtle difference between the different cysteine residues in rHb was also evaluated by multiple PMB titrations. The difference between the two cysteines in their environment may partially explain their reaction specificity. Cysteine 125 in the β unit of rHb is exposed on the surface, explaining its reactivity with glutathione. Cysteine 13 in the α subunit of rHb is much less exposed, and is located in a hydrophobic pocket, a conclusion that is consistent with the previous observation of its selective binding with dimethylarsinous acid, a reactive arsenic metabolite. The method is potentially useful for probing cysteines in other biologically important proteins and for studying proteins that are associated with conformational or structural changes induced by denaturing processes, protein modifications, protein‐protein interactions and protein assemblies. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Considering the tremendous complexity and the wide dynamic range of protein samples from biological origin and their proteolytic peptide mixtures, proteomics largely requires simplification strategies. One common approach to reduce sample complexity is to target a particular amino acid in proteins or peptides, such as cysteine (Cys), with chemical tags in order to reduce the analysis to a subset of the whole proteome. The present work describes the synthesis and the use of two new cysteinyl tags, so‐called cysteine‐reactive covalent capture tags (C3T), for the isolation of Cys‐containing peptides. These bifunctional molecules were specifically designed to react with cysteines through iodoacetyl and acryloyl moieties and permit efficient selection of the tagged peptides. To do so, a thioproline was chosen as the isolating group to form, after a deprotection/activation step, a thiazolidine with an aldehyde resin by the covalent capture (CC) method. The applicability of the enrichment strategy was demonstrated on small synthetic peptides as well as on peptides derived from digested proteins. Mass spectrometric (MS) analysis and tandem mass spectrometric (MS/MS) sequencing confirmed the efficient and straightforward selection of the cysteine‐containing peptides. The combination of C3T and CC methods provides an effective alternative to reduce sample complexity and access low abundance proteins. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
《Electrophoresis》2017,38(3-4):429-440
The impact of microwave irradiation on the in‐solution digestion processes and the detection limit of proteins are systematically studied. Kinetic processes of many peptides produced through the trypsin digestion of various proteins under microwave heating at 50°C were investigated with MALDI‐MS. This study also examines the detection limits and digestion completeness of individual proteins under microwave heating at 50°C and at different time intervals (1, 5 and 30 min) using LC‐MS. We conclude that if the peptides without missed cleavage dictate the detection limit, conventional digestion will lead to a better detection limit. The detection limit may not differ between the microwave and conventional heating if the peptides with missed cleavage sites and strong intensity are formed at the very early stage (i.e., less than 1 min) and are not further digested throughout the entire digestion process. The digestion of Escherichia coli lysate was compared under conventional and short time (microwave) conditions. The number of proteins identified under conventional heating exceeded that obtained from microwave heating over heating periods less than 5 min. The overall results show that the microwave‐assisted digestion is not complete. Although the sequence coverage might be better, the detection limit might be worse than that under conventional heating.  相似文献   

14.
Highly homogenous α zein protein was isolated from maize kernels in an environment‐friendly process using 95% ethanol as solvent. Due to the polyploidy and genetic polymorphism of the plant source, the application of high resolution separation methods in conjunction with precise analytical methods, such as MALDI‐TOF‐MS, is required to accurately estimate homogeneity of products that contain natural zein protein. The α zein protein product revealed two main bands in SDS‐PAGE analysis, one at 25 kDa and other at 20 kDa apparent molecular mass. Yet, high resolution 2DE revealed approximately five protein spot groups in each row, the first at ca. 25 kDa and the second at ca. 20 kDa. Peptide mass fingerprinting data of the proteins in the two dominant SDS‐PAGE bands matched to 30 amino acid sequence entries out of 102 non‐redundant data base entries. MALDI‐TOF‐MS peptide mapping of the proteins from all spots indicated the presence of only α zein proteins. The most prominent ion signals in the MALDI mass spectra of the protein mixture of the 25 kDa SDS gel band after in‐gel digestion were found at m/z 1272.6 and m/z 2009.1, and the most prominent ion signals of the protein mixture of the 20 kDa band after in‐gel digestion were recorded at m/z 1083.5 and m/z 1691.8. These ion signals have been found typical for α zein proteins and may serve as marker ion signals which upon chymotryptic digestion reliably indicate the presence of α zein protein in two hybrid corn products.  相似文献   

15.
Lee KK  Liu PC  Chen YL 《Electrophoresis》1999,20(17):3343-3346
Electrophoretic characterization of a novel cysteine protease produced by pathogenic luminous Vibrio harveyi, originally isolated from diseased tiger prawn Penaeus monodon in Taiwan, is demonstrated in the present study using native polyacrylamide gel electrophoresis (native PAGE), sodium dodecyl sulfate-PAGE (SDS-PAGE), crossed immunoelectrophoresis (CIE) and isoelectric focusing (IEF) gels. The protease has a pI of 6.4 and exhibits a fast-migrating feature in native-PAGE and CIE gels indicating that it is a negatively charged protease. The protease electrophoresed as a 22 kDa protein band in native- and SDS-PAGE (in SDS - buffer with or without the presence of 2-mercaptoethanol) while it electrophoresed as a 38 kDa protein band in SDS-PAGE when the samples were boiled for 10 min prior to electrophoresis. The results reveal that the enzyme is an SDS-resistant monomeric protease and its high negative charge is not influenced by SDS (detergent) without boiling the sample. The present results are useful in determining proteins of similar nature to this unique cysteine protease.  相似文献   

16.
Tandem mass spectrometry (MS/MS) is an attractive technique for sequencing membrane proteins because it can be applied to peptides in mixtures that are difficult to separate chromatographically. To evaluate the suitability of MS/MS sequencing for membrane proteins and to develop protocols for the preparation of the cleaved peptides, we employed the well characterized apoproteins of bacteriorhodopsin and bovine rhodopsin, i.e. bacterioopsin and opsin, respectively. Without separation, nine out of ten peptides resulting from cyanogen bromide cleavage of bacterioopsin were detected by fast atom bombardment MS, the single undetected fragment being a tetrapeptide that was presumably hidden in the low-m/z matrix background. Furthermore, MS/MS was used to confirm the sequence of all the peptides detected with m/z values below 3.5 kDa (40% of the protein). Bovine opsin was analyzed in a similar fashion. Tandem MS/MS has thus allowed the sequencing of substantial portions of two integral membrane proteins by the analysis of unseparated peptide mixtures, demonstrating for the first time that this technique can obviate some of the most serious difficulties associated with sequencing membrane proteins, namely the difficult-to-achieve separation of the ‘sticky’ peptide fragments.  相似文献   

17.
In this study, we have examined two cysteine modifications resulting from sample preparation for protein characterization by mass spectrometry (MS): (1) a previously observed conversion of cysteine into dehydroalanine, now found in the case of disulfide mapping and (2) a novel modification corresponding to conversion of cysteine into alanine. Using model peptides, the conversion of cysteine into dehydroalanine via β‐elimination of a disulfide bond was seen to result from the conditions of typical tryptic digestion (37°C, pH 7.0–9.0) without disulfide reduction and alkylation. Furthermore, the surprising conversion of cysteine into alanine was shown to occur by heating cysteine‐containing peptides in the presence of a phosphine (tris(2‐carboxyethyl)phosphine hydrochloride (TCEP)). The formation of alanine from cysteine, investigated by performing experiments in H2O or D2O, suggested a radical‐based desulfurization mechanism unrelated to β‐elimination. Importantly, an understanding of the mechanism and conditions favorable for cysteine desulfurization provides insight for the establishment of improved sample preparation procedures of protein analysis. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Our previous study showed that selenamide reagents such as ebselen and N-(phenylseleno)phthalimide (NPSP) can be used for selective and rapid derivatization of protein/peptide thiols in high conversion yield. This paper reports the systematic investigation of MS/MS dissociation behaviors of selenamide-derivatized peptide ions upon collision induced dissociation (CID) and electron transfer dissociation (ETD). In the positive ion mode, derivatized peptide ions exhibit tag-dependent CID dissociation pathways. For instance, ebselen-derivatized peptide ions preferentially undergo Se–S bond cleavage upon CID to produce a characteristic fragment ion, the protonated ebselen (m/z 276), which allows selective identification of thiol peptides from protein digest as well as selective detection of thiol proteins from protein mixture using precursor ion scan (PIS). In contrast, NPSP-derivatized peptide ions retain their phenylselenenyl tags during CID, which is useful in sequencing peptides and locating cysteine residues. In the negative ion CID mode, both types of tags are preferentially lost via the Se–S cleavage, analogous to the S–S bond cleavage during CID of disulfide-containing peptide anions. In consideration of the convenience in preparing selenamide-derivatized peptides and the similarity of Se–S of the tag to the S–S bond, we also examined ETD of the derivatized peptide ions to probe the mechanism for electron-based ion dissociation. Interestingly, facile cleavage of Se–S bond occurs to the peptide ions carrying either protons or alkali metal ions, while backbone cleavage to form c/z ions is severely inhibited. These results are in agreement with the Utah-Washington mechanism proposed for depicting electron-based ion dissociation processes.  相似文献   

19.
L ‐Asparaginase from Erwinia chrysanthemi (ASPG_ERWCH; UniProtKB accession number P06608 (Erwinase®)) and L ‐asparaginase 2 from Escherichia coli (ASPG2_ECOLI; UniProtKB accession number P00805 (Medac®)), both L ‐asparagine amidohydrolases, are widely used for the treatment of acute lymphoblastic leukemia. A series of serious side effects have been reported and this warrants studies into the protein chemistry of the medical products sold. Mass spectrometry (MS) data on ASPG_ERWCH and ASPG2_ECOLI have not been published so far and herein a gel‐based proteomics study was performed to provide information about sequence and modifications of the commercially available medical products. ASPG_ERWCH and ASPG2_ECOLI were applied onto two‐dimensional gel electrophoresis, spots were in‐gel digested with several proteases and resulting peptides and protein modifications were analysed by nano‐ESI‐LC‐MS/MS. Four spots were observed for ASPG_ERWCH, six spots were observed for ASPG2_ECOLI and the identified proteins showed high sequence coverage without sequence conflicts. Several protein modifications including technical and posttranslational modifications were demonstrated. Protein modifications are known to change physicochemical, immunochemical, biological and pharmacological properties and results from this work may challenge re‐designing of the product including possible removal of the modifications by the manufacturer because it is not known whether they are contributing to the serious adverse effects of the protein drug.  相似文献   

20.
Despite all remarkable progress in gel‐based proteomics in recent years, there is still need to further improve quantification by decreasing the detection limits and increasing the dynamic range. These criteria are achieved best by fluorescent dyes that specifically stain the proteins either by adsorption after gel electrophoresis (in‐gel staining) or covalent coupling prior to gel electrophoresis (in‐solution staining). Here we report a multiplex analysis of protein samples using maleimide‐activated cyanine‐based (Cy3 and Cy5) and rhodamine‐based dyes (Dy505, Dy535, and Dy635) to permanently label all thiol‐groups of cysteine‐containing proteins. The detection limits in SDS‐PAGE were about 10 ng per band and even 2 ng for BSA due to its high content of cysteine residues. Thus only 5 μg protein of a mouse brain homogenate were analyzed by 2‐DE. Both cyanine‐ and rhodamine‐based dyes also stained proteins that did not contain cysteines, probably by reaction with amino groups. This side reactivity did not limit the method and might even extend its general use to proteins missing cysteine residues, but at a lower sensitivity. The dynamic range was more than two orders of magnitude in SDS‐PAGE and the Dy‐fluorophores did not alter the mobility of the tested proteins. Thus, a mixture of Dy505‐, Dy555‐, and Dy635‐labeled Escherichia coli lysates were separated by 2‐DE in a single gel and the three spot patterns relatively quantified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号