首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A capillary formed by connecting a 9.7 cm‐long separation capillary with id 25 μm with an auxiliary 22.9 cm‐long capillary with id 100 μm (coupled capillary) was tested for electrophoretic separation at high electric field intensities. The coupled capillary was placed in the cassette of a standard electrophoresis apparatus. It was used in the short‐end injection mode for separation of a mixture of dopamine, noradrenaline, and adrenaline in a BGE of 20 mM citric acid/NaOH, pH 3.2. An intensity of 2.7 kV/cm was attained in the separation part of the capillary at a separation voltage of 30 kV, which is 2.9 times more than maximum intensity value attainable in a capillary with the same length with uniform id. At these high electric field intensities, the migration times of the tested neurotransmitters had values of 12.3–13.3 s and the attained separation efficiency was between 2350 and 2760 plates/s. It is thus demonstrated that an effective separation instrument ‐ a coupled capillary ‐ can be used for very rapid separation in combination with standard, commercially available instrumentation.  相似文献   

2.
The electric‐field distribution at the end of a charged capillary system is detected using a scanning electrochemical microscopy (SECM) coupling imaging mode. A theoretical model based on the resistance of solution at the capillary end describes the three‐dimensional distribution of the electric field. The effect of the detection electrode position and separation high voltage on solution potential is observed and analyzed. Results demonstrate that the electric field at the end‐channel shows an isopotential contour changing from a disk shape into a hemispherical shape when leaving the capillary opening. The solution potential decreases along the central axis of the capillary to the detection reservoir. In the same scanning plane, the solution potential decreases along the radial direction. Increase of the separation high voltage results in the increase of the absolute solution potential but does not change the relative spatial electric‐field distribution.  相似文献   

3.
《Analytical letters》2012,45(9):2039-2053
Abstract

In this study, a method for the separation and determination of basic analytes in aqueous capillary electrophoresis (CE) was developed based on high electric field strengths and ionic liquids (ILs). The resulting electric field strengths ranged from 500 to 1000 V/cm. Trishydroxymethylaminomethane (Tris) and sodium cholate (SC) were used as main electrolytes. The ionic liquids 1‐ethyl‐3‐methylimidazoium tetrafluoroborate (1E‐3MI‐TFB) and 1‐butyl‐3‐methylimidazoium tetrafluoroborate (1B‐3MI‐TFB) were used as modifiers to improve the separation efficiency and selectivity. It was shown that increasing the applied electric field strengths not only caused short analysis time, but also did not induce excessive Joule heating in the capillary when ionic liquids were used as modifiers. The susceptibility to high electric field of separation efficiency in capillary electrophoresis, with the effect of ionic liquids, was subsequently discussed, and the developed method was used to analyze three model analytes in Sinacalia tangutica. The accurate results illustrated that high electric field strength with the ionic liquids was feasible in CE.  相似文献   

4.
《Electrophoresis》2017,38(7):1022-1037
In this work, we explore two methods to simultaneously measure the electroosmotic mobility in microchannels and the electrophoretic mobility of micron‐sized tracer particles. The first method is based on imposing a pulsed electric field, which allows to isolate electrophoresis and electroosmosis at the startup and shutdown of the pulse, respectively. In the second method, a sinusoidal electric field is generated and the mobilities are found by minimizing the difference between the measured velocity of tracer particles and the velocity computed from an analytical expression. Both methods produced consistent results using polydimethylsiloxane microchannels and polystyrene micro‐particles, provided that the temporal resolution of the particle tracking velocimetry technique used to compute the velocity of the tracer particles is fast enough to resolve the diffusion time‐scale based on the characteristic channel length scale. Additionally, we present results with the pulse method for viscoelastic fluids, which show a more complex transient response with significant velocity overshoots and undershoots after the start and the end of the applied electric pulse, respectively.  相似文献   

5.
We have identified novel CE conditions for the separation of 7‐amino‐4‐methylcoumarin‐labeled monosaccharides and oligosaccharides from glycoproteins. Using a neutrally coated capillary and alkaline borate buffer containing hydroxypropylcellulose and ACN, saccharide derivatives form anionic borate complexes, which move from the cathode to the anode in an electric field and are detected near the anodic end. Excess labeling reagents and other fluorescent products remain at the cathodic end. Fluorimetric detection using an LED as a light source enables determination of monosaccharide derivatives with good linearity between at least 0.4 and 400 μM, may correspond to 140 amol to 140 fmol. The lower LOD (S/N = 5) is only 80 nM in the sample solution (ca. 28 amol). The results were comparable to reported values using fluorometric detection LC. The method was also applied to the analysis of oligosaccharides that were enzymatically released from glycoproteins. Fine resolution enables profiling of glycans in glycoproteins. The applicability of the method was examined by applying it to other derivatives labeled with nonacidic tags such as ethyl p‐aminobenzoate‐ and 2‐aminoacridone‐labeled saccharides.  相似文献   

6.
A new sample introduction method of capillary electrophoresis, in which field-amplified sample injection was combined with a pre-concentration of non-uniform field electrophoresis, is presented in this paper. With an additional pre-concentration voltage applied to sample solution, a non-uniform electric field was generated, with which analytical cations or anions were pre-concentrated around an electrode adjacent to the injection end of capillary. After the pre-concentration, analytical ions were injected into the capillary and stacked at the boundary between sample and buffer solution inside capillary by field-amplified injection technique. In contrast to the conventional field-amplified injection, larger concentration factor and higher analytical sensitivity were obtained with the improved pre-concentration method. Its concentration factor was about 10 approximately 15 fold as that of field-amplified sample injection.  相似文献   

7.
We have investigated the effect of polymer gel reconditioning, the shape of the capillary, the applied electric field, and the capillary length for single-stranded DNA. The polyethylene oxide gel had deformed under the high electric field causing the degradation of the separation power. By the reintroduction of the fresh polyethylene oxide gel for the next run, one-base resolution was recovered. It turned out that the tip of the capillary at the injection side needed to be clean and symmetric for much improved resolution. Changing DNA motion by the pulsed electric field resulted in the separation of DNA far more than 500 bases.  相似文献   

8.
Analyte recovery is an important figure to assess protein adsorption on fused‐silica capillaries. In 1991, Regnier et al. estimated recovery by assuming the loss of analyte from adsorption and thus the decrease in peak area measured by two detectors to be proportional to the length of the capillary section between them. In this report, we closely examine this concept and its adaptation to commercial CE instruments to determine protein recovery. We hypothesize that, once a steady‐state migration is reached, protein adsorption is a first‐order process with respect to protein concentration and surface density of adsorbing sites. This hypothesis is shown to be valid over a reasonably wide range of capillary effective length and, as a result, protein recovery decreases exponentially with the migrated distance. However, unlike the traditional recovery figure obtained through a conventional spike process, protein recovery measured by this approach does not have the same merit since it is strongly dependent from capillary dimensions and applied electric field. Nevertheless, protein recovery and the slope of the logarithmic protein peak area versus length plot are useful figures to compare protein adsorption on different capillary surfaces. Several literature reports dealing with the application of Regnier concept to calculate protein recovery are discussed.  相似文献   

9.
The distribution of ions in a capillary with both pressurized flow and an electric field has been studied. We have earlier reported that the overall concentration of ions increase in a capillary with high electric field and a pressurized flow. Now we describe how the ions are distributed in the capillary both along the capillary length and in the radial direction as a result of the parabolic flow profile. We have combined current measurements with finite element techniques in order to get better understanding of the system. We have found that the concentration of the ions that because of the electric mobility moves towards the flow primarily increases at the beginning of the electric field and close to the capillary wall. In view of the results we have proposed an alterative explanation of earlier published results concerning voltage-induced variation in capacity factors.  相似文献   

10.
Bubble and particle velocities in water and alcohols, under the influence of an electric field, were investigated in this work. Air bubbles were injected into the liquids through an electrified metal capillary insulated by glass with its tip left exposed. The end of the capillary from which the bubbles were released was conical in shape. Due to an electric field formed between the noninsulated capillary tip and a ground electrode immersed in the solvent, small bubbles were formed and used as tracers for the electrohydrodynamic (EHD) flow field. The pressure inside the capillary was measured for all liquids used in this study. For water, ethanol, and n-propanol, it was found that, at relatively low applied voltage, the pressure increases with voltage, reaches a maximum (pressure breakpoint), and then sharply decreases. This behavior is a result of the competition between the electric force appearing at the interface and the force due to the EHD flow near the capillary tip. The electric force tends to increase the pressure inside the capillary, while the EHD flow tends to decrease this pressure. For isopropanol and butanol, the pressure breakpoint was not observed in the range of voltage applied in the experiments. The EHD flow velocity was measured by using microbubbles and particles as flow tracers. An adaptive phase-Doppler velocimeter was employed to measure the velocity of bubbles, while the velocity of particles was measured by trajectory visualization of fluorescent particles. A discrepancy was observed between the two methods because of the location at which the measurements were made. It was found that average velocities of both bubbles and particles increase linearly with applied voltage. Experiments were also conducted to investigate pumping of water, which is a result of the EHD velocity near the capillary tip. The pumping flow rate was linearly related to the applied voltage and agreed well with EHD velocity measurements obtained from particle trajectories. Copyright 2000 Academic Press.  相似文献   

11.
This study concerns the technique electric field-assisted capillary liquid chromatography. In this technique, an electric field is applied over the separation capillary in order to provide an additional selectivity. In this technique, the electric field is applied in-line in the separation capillary and here the electric current is the factor limiting the magnitude of applied electric field. The influence of Joule heating and other factors on the current in such systems has been investigated. The temperature in the capillary was first measured within a standard CE set-up, as function of effect per unit of length. Then the same cooling system was applied to an in-line set-up, to replicate the conditions between the two systems, and thus the temperature. Thus Joule heating effects could then be calculated within the in-line system. It was found that for systems applying an electric field in line, the direct influence from Joule heating was only relatively small. The pH in the capillary was measured in the in-line set-up using cresol red/TRIS solutions as pH probe. Significant changes in pH were observed and the results suggested that electrolysis of water is the dominant electrode reaction in the in-line system. In summary, the observed conductivity change in in-line systems was found to be mainly due to the pH change by hydrolysis of water, but primarily not due the temperature change in the capillary column.  相似文献   

12.
The phenomenon of peak area decrease due to high injection voltage (Vinj, e.g. 10–30 kV, 200–600 V/cm in the 50 cm capillary) was found in the analysis of very dilute DNA fragments (<0.2 mg/L) by using high‐sensitive electrokinetic supercharging‐CGE. The possibility of DNA cleavage in aqueous solution was suggested, in addition to the aggregation phenomenon that is already known. The analysis of intentionally voltage‐affected fragments (at 200 V/cm) also showed decreased peak areas depending on the time of the voltage being applied. Computer simulation suggested that a high electric field (a few kV/cm or more) could be generated partly between the electrode and the capillary end during electrokinetic injection (EKI) process. After thorough experimental verification, it was found that the factors affecting the damage during EKI were the magnitude of electric field, the distance between tips of electrode and capillary (De/c), sample concentration and traveling time during EKI in sample vials. Furthermore, these factors are correlating with each other. A low conductivity of diluted sample would cause a high electric field (over a few hundred volts per centimeter), while the longer De/c results in a longer traveling time during EKI, which may cause a larger degree of damage (aggregation and cleavage) on the DNA fragments. As an important practical implication of this study, when the dilute DNA fragments (sub mg/L) are to be analyzed by CGE using EKI, injection voltage should be kept as low as possible.  相似文献   

13.
We present a novel easy‐to‐operate and efficient method to improve the separation efficiency in short‐capillary electrophoresis by introducing steady backflow to counterbalance electro‐osmotic flow without the use of any external pressure. The backflow was easily generated by tapering the capillary end, which was achieved by heating a straight capillary and stretching it with a constant force. We investigated the net fluidic transport rate under different tip lengths and separation voltages. Good run‐to‐run repeatability and capillary‐to‐capillary reproducibility of the present method were obtained with RSD less than 1.5%, indicating the stability of the fluid transport rate in the tapered capillary, which ensures the quantification and repeatability of capillary zone electrophoresis (CZE) analysis. Enhanced separation of the tapered short capillary electrophoresis was demonstrated by CZE analyzing amino acids and positional isomers. Baseline separations were achieved in less than 60 s using a tapered capillary with the effective length of 5 cm, while no separation was achieved using a normal capillary without a tapered tip. The present study provides a promising method to use pressure‐driven backflow to enhance separation efficiency in short‐capillary electrophoresis, which would be of potential value in a wide application for fast analysis of complex samples.  相似文献   

14.
The electrophoresis of λ‐DNA is observed in a microscale converging channel where the center‐of‐masses trajectories of DNA molecules are tracked to measure instantaneous electrophoretic (EP) mobilities of DNA molecules of various stretch lengths and conformations. Contrary to the usual assumption that DNA mobility is a constant, independent of field and DNA length in free solution, we find DNA EP mobility varies along the axis in the contracting geometry. We correlate this mobility variation with the local stretch and conformational changes of the DNA, which are induced by the electric field gradient produced by the contraction. A “shish‐kebab” model of a rigid polymer segment is developed, which consists of aligned spheres acting as charge and drag centers. The EP mobility of the shish‐kebab is obtained by determining the electrohydrodynamic interactions of aligned spheres driven by the electric field. Multiple shish‐kebabs are then connected end‐to‐end to form a freely jointed chain model for a flexible DNA chain. DNA EP mobility is finally obtained as an ensemble average over the shish‐kebab orientations that are biased to match the overall stretch of the DNA chain. Using physically reasonable parameters, the model agrees well with experimental results for the dependence of EP mobility on stretch and conformation. We find that the magnitude of the EP mobility increases with DNA stretch, and that this increase is more pronounced for folded conformations.  相似文献   

15.
It is demonstrated that continuous filaments of rapidly crystallizing polymers, such as polyethylene and polypropylene, can be spun from the melt using an electric field as the only driving force. The molten polymer is fed into a metallic capillary forming a hemispherical drop at the end of the orifice. An electrical field is applied between the capillary and a conducting plate held perpendicular to the axis of the orifice. Above a critical field intensity a fine continuous jet of molten polymer is drawn; rapid crystallization ensues and a continuous fiber is formed. For fibers spun in an uncontrolled thermal environment, corresponding to ambient air temperature, and at electric field intensities of 6 and 7 kV cm?1, the properties are typically those of unoriented or slightly oriented polyolefin fibers, such as would be obtained in a conventional fiber spinning process.  相似文献   

16.
A new way of regulation of electroosmotic flow (EOF) in capillary zone electrophoresis (CZE) by external electric field has been developed. A set of three high-voltage power supplies is used to form a radial electric field across the capillary wall. One power supply is applied in the usual way as a driving force of CZE and EOF to the ends of the inner capillary compartment dipped into the electrode vessels and filled with background electrolyte. Two power supplies are connected to the ends of the outer low-conductivity coating of the capillary which is formed by the dispersion of copolymer of aniline and p-phenylenediamine in polystyrene matrix. The difference between electric potentials on the outer capillary surface and inside the capillary determines the voltage of radial electric field across the capillary wall and affects the electrokinetic potential at the solid-liquid interface inside the capillary. The effect of magnitude and polarity of external radial electric field on the flow rate of EOF, on the migration times of charged analytes and on the separation efficiency and resolution of CZE separations of synthetic oligopeptides, diglycine, triglycine and octapeptide fragments of human insulin was evaluated. Through the EOF control by external electric field the dynamic effective length of the capillary was obtained and the speed of analysis and resolution of CZE separations of peptide analytes could be optimized.  相似文献   

17.
Zhang Y  Lee HK  Li SF 《Talanta》1998,45(4):613-618
Fast, efficient separation of five free acid forms of porphyrins was achieved in a short capillary and a chip, respectively. The capillary was 6 cm long from injection end to detector with an electric field strength of 214 V cm(-1). Separations were performed within 5 min. A glass microchip device was fabricated using standard photolithographic procedures and chemical wet etching. The channels were sealed using a direct bonding technique. For a separation length of 2.8 cm with electric field strength of 500 V cm(-1), electrophoretic separations with baseline resolution were achieved in less than 2 min. A variable wavelength epi-fluorescence microscope was used as an on-column detector.  相似文献   

18.
Electric fields are often used to transport fluids (by electroosmosis) and separate charged samples (by electrophoresis) in microfluidic devices. However, there exists inevitable Joule heating when electric currents are passing through electrolyte solutions. Joule heating not only increases the fluid temperature, but also produces temperature gradients in cross-stream and axial directions. These temperature effects make fluid properties non-uniform, and hence alter the applied electric potential field and the flow field. The mass species transport is also influenced. In this paper we develop an analytical model to study Joule heating effects on the transport of heat, electricity, momentum and mass species in capillary-based electrophoresis. Close-form formulae are derived for the temperature, applied electrical potential, velocity, and pressure fields at steady state, and the transient concentration field as well. Also available are the compact formulae for the electric current and the volume flow rate through the capillary. It is shown that, due to the thermal end effect, sharp temperature drops appear close to capillary ends, where sharp rises of electric field are required to meet the current continuity. In order to satisfy the mass continuity, pressure gradients have to be induced along the capillary. The resultant curved fluid velocity profile and the increase of molecular diffusion both contribute to the dispersion of samples. However, Joule heating effects enhance the sample transport velocity, reducing the analysis time in capillary electrophoretic separations.  相似文献   

19.
The objective of this work is to develop a numerical method to simulate DNA electrophoresis in complicated geometries. The proposed numerical scheme is composed of three parts: (1) a bead-spring Brownian dynamics (BD) simulation, (2) an iterative solver-enhanced finite element method (FEM) for the electric field, and (3) the connection algorithm between FEM and BD. A target-induced searching algorithm is developed to quickly address the electric field in the complex geometry which is discretized into unstructured finite element meshes. We also develop a method to use the hard-sphere interaction algorithm proposed by Heyes and Melrose [J. Non-Newtonian Fluid Mech. 46, 1 (1993)] in FEM. To verify the accuracy of our numerical schemes, our method is applied to the problem of lambda-DNA deformation around an isolated cylindrical obstacle for which the analytical solution of the electric field is available and experimental data exist. We compare our schemes with an analytical approach and there is a good agreement between the two. We expect that the present numerical method will be useful for the design of future microfluidic devices to stretch and/or separate DNA.  相似文献   

20.
We perform multiscale simulations based on the coupling of molecular dynamics and lattice‐Boltzmann (LB) method to study the electrohydrodynamics of a polyampholyte‐grafted spherical nanoparticle. The long‐range hydrodynamic interactions are modeled by coupling the movement of particles to a LB fluid. Our results indicate that the net‐neutral soft particle moves with a nonzero mobility under applied electric fields. We systematically explore the effects of different parameters, including the chain length, grafting density, electric field, and charge sequence, on the structures of the polymer layer and the electrophoretic mobility of the soft particle. It shows that the mobility of nanoparticles has remarkable dependence on these parameters. We find that the deformation of the polyampholyte chains and the ion distribution play dominant roles in modulating the electrokinetic behavior of the polyampholyte‐grafted particle. The enhancement or reduction in the accumulation of counterions around monomers can be attributed to the polymer layer structure and the conformational transition of the chains in the electric field. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1435–1447  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号