首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
A simple and ubiquitously present group, free amine, is used as a directing group to synthesize axially chiral biaryl compounds by PdII‐catalyzed atroposelective C?H olefination. A broad range of axially chiral biaryl‐2‐amines can be obtained in good yields with high enantioselectivities (up to 97 % ee). Chiral spiro phosphoric acid (SPA) proved to be an efficient ligand and the loading could be reduced to 1 mol % without erosion of enantiocontrol in gram‐scale synthesis. The resulting axially chiral biaryl‐2‐amines also provide a platform for the synthesis of a set of chiral ligands.  相似文献   

2.
An enantioselective C?H arylation of phosphine oxides with o‐quinone diazides catalyzed by an iridium(III) complex bearing an atropchiral cyclopentadienyl (Cpx) ligand and phthaloyl tert‐leucine as co‐catalyst is reported. The method allows access to a) P‐chiral biaryl phosphine oxides, b) atropo‐enantioselective construction of sterically demanding biaryl backbones, and also c) selective assembly of axial and P‐chiral compounds in excellent yields and diastereo‐ and enantioselectivities. Enantiospecific reductions provide monodentate chiral phosphorus(III) compounds having structures and biaryl backbones with proven importance as ligands in asymmetric catalysis.  相似文献   

3.
We have discovered that the racemization of configurationally stable, axially chiral 2,2′‐dihydroxy‐1,1′‐biaryls proceeds with a catalytic amount of a cyclopentadienylruthenium(II) complex at 35–50 °C. Combining this racemization procedure with lipase‐catalyzed kinetic resolution led to the first lipase/metal‐integrated dynamic kinetic resolution of racemic axially chiral biaryl compounds. The method was applied to the synthesis of various enantio‐enriched C1‐ and C2‐symmetric biaryl diols in yields of up to 98 % and enantiomeric excesses of up to 98 %, which paves the way for new developments in the field of asymmetric synthesis.  相似文献   

4.
Dibenzocyclooctadiene lignans are an interesting class of molecules because of their unique structure based on an axially chiral biaryl moiety as well as their significant biological activity. Herein, we describe the development of a palladium‐catalyzed atroposelective C?H alkynylation and its application in gram‐scale, stereocontrolled formal syntheses of (+)‐isoschizandrin and (+)‐steganone. tert‐Leucine was identified as an efficient, catalytic transient chiral auxiliary. A wide range of enantiomerically enriched biaryl compounds were prepared by this approach in good yields (up to 99 %) with excellent enantioselectivity (up to >99 % ee).  相似文献   

5.
Dibenzocyclooctadiene lignans are an interesting class of molecules because of their unique structure based on an axially chiral biaryl moiety as well as their significant biological activity. Herein, we describe the development of a palladium‐catalyzed atroposelective C−H alkynylation and its application in gram‐scale, stereocontrolled formal syntheses of (+)‐isoschizandrin and (+)‐steganone. tert‐Leucine was identified as an efficient, catalytic transient chiral auxiliary. A wide range of enantiomerically enriched biaryl compounds were prepared by this approach in good yields (up to 99 %) with excellent enantioselectivity (up to >99 % ee).  相似文献   

6.
This review describes new methods for the synthesis of chiral monophosphine ligands with menthyl phenylphosphinate as a chiral auxiliary through asymmetric Suzuki‐Miyaura cross‐coupling reactions and asymmetric C–H functionalization. The chiral menthyl phenylphosphinate as a chiral auxiliary is easy to prepare and the menthyl group can easily be transformed into other functional groups, with the chiral center synchronously remaining. These methodologies provide highly efficient and practical strategies for the synthesis of novel axially chiral biaryl monophosphine oxides and their corresponding phosphines. Meanwhile, these reactions are easy to handle and exhibit wide scope for substrates with excellent diastereomeric ratios.  相似文献   

7.
The molybdenum‐catalyzed asymmetric ring‐closing metathesis of the various Cs‐symmetric (π‐arene)chromium substrates provides the corresponding bridged planar‐chiral (π‐arene)chromium complexes in excellent yields with up to >99 % ee. With a bulky and unsymmetrical substituent, such as N‐indolyl or 1‐naphthyl, at the 2‐positions of the η6‐1,3‐diisopropenylbenzene ligands, both biaryl‐based axial chirality and π‐arene‐based planar chirality are simultaneously induced in the products. The axial chirality is retained even after the removal of the dicarbonylchromium fragment, and the chiral biaryl/heterobiaryl compounds are obtained with complete retention of the enantiopurity.  相似文献   

8.
We present here a highly efficient NHC‐catalyzed kinetic resolution of a wide range of 1,1′‐biaryl‐2,2′‐diols and amino alcohols to provide them in uniformly ≥99 % ee. This represents the first highly enantioselective catalytic acylation of axially chiral alcohols. The aldehyde backbone that is incorporated into the chiral acyl azolium intermediate was found to have a significant effect on the enantioselectivity of the process.  相似文献   

9.
Axial‐to‐central chirality transfer is an important strategy to construct chiral centers, where the axially chiral reagents are mostly limited to atropomerically stable ones. Reported herein is a RhIII‐catalyzed enantioselective spiroannulative synthesis of nitrones. The coupling proceeds via C?H arylation to give an atropomerically metastable biaryl, followed by intramolecular dearomative trapping under oxidative conditions with high degree of chirality transfer.  相似文献   

10.
The first phosphoric acid catalyzed direct arylation of 2‐naphthylamines with iminoquinones for the atroposelective synthesis of axially chiral biaryl amino alcohols has been developed. This reaction constitutes a highly functional‐group‐tolerant route for the rapid construction of enantioenriched axially chiral biaryl amino alcohols, and is a rare example of 2‐naphthylamines acting as nucleophiles in an organocatalytic enantioselective transformation. Furthermore, the products, which feature various halogen atoms, provide access to structurally diverse axially chiral amino alcohols through further transformations.  相似文献   

11.
The enantioselective construction of axially chiral compounds by electrophilic carbothiolation of alkynes is disclosed for the first time. This enantioselective transformation is enabled by the use of a Ts‐protected bifunctional sulfide catalyst and Ms‐protected ortho‐alkynylaryl amines (Ts=tosyl; Ms=mesyl). Both electrophilic arylthiolating and electrophilic trifluoromethylthiolating reagents are suitable for this reaction. The obtained products of axially chiral vinyl–aryl amino sulfides can be easily converted into biaryl amino sulfides, biaryl amino sulfoxides, biaryl amines, vinyl–aryl amines, and other valuable difunctionalized compounds.  相似文献   

12.
A palladium‐catalyzed direct synthesis of symmetric biaryl compounds from aryl halides in the presence of tBuLi is described. In situ lithium–halogen exchange generates the corresponding aryl lithium reagent, which undergoes a homocoupling reaction with a second molecule of the aryl halide in the presence of the palladium catalyst (1 mol %). The reaction takes place at room temperature, is fast (1 h), and affords the corresponding biaryl compounds in good to excellent yields. The application of the method is demonstrated in an efficient asymmetric total synthesis of mastigophorene A. The chiral biaryl axis is constructed with an atropselectivity of 9:1 owing to catalyst‐induced remote point‐to‐axial chirality transfer.  相似文献   

13.
A palladium‐catalyzed direct synthesis of symmetric biaryl compounds from aryl halides in the presence of tBuLi is described. In situ lithium–halogen exchange generates the corresponding aryl lithium reagent, which undergoes a homocoupling reaction with a second molecule of the aryl halide in the presence of the palladium catalyst (1 mol %). The reaction takes place at room temperature, is fast (1 h), and affords the corresponding biaryl compounds in good to excellent yields. The application of the method is demonstrated in an efficient asymmetric total synthesis of mastigophorene A. The chiral biaryl axis is constructed with an atropselectivity of 9:1 owing to catalyst‐induced remote point‐to‐axial chirality transfer.  相似文献   

14.
We report herein a novel atropoenantioselective redox‐neutral amination of biaryl compounds triggered by a cascade of borrowing hydrogen and dynamic kinetic resolution under the cooperative catalysis of a chiral iridium complex and an achiral Brønsted acid. This protocol features broad substrate scope and good functional‐group tolerance, and allows the rapid assembly of axially chiral biaryl compounds in good to high yields and with high to excellent enantioselectivity.  相似文献   

15.
《中国化学》2018,36(2):153-156
A series of structurally novel P‐chiral biaryl bisphosphorus ligands L1‐L5 (BABIBOPs) are developed, providing high efficiency for the first time in palladium‐catalyzed asymmetric hydrogenation of β‐aryl and β‐alkyl substituted β‐keto esters. With the Pd‐ L3 (iPr‐BABIBOP) catalyst, a series of chiral β‐hydroxyl carboxylic esters are formed in excellent enantioselectivities (up to>99% ee) and yields at catalyst loading as low as 0.01 mol%.  相似文献   

16.
In the present communication we describe two examples of a new kind of configurationally stable non‐biaryl atropisomers in which the Ar‐N bond is the chiral axis, namely 1‐(o‐nitrophenyl)‐2‐aryl‐3‐methyl‐1,4,5,6‐tetrahydropyrimidinium iodides 1. Stereochemical features of such compounds are analyzed on the basis of their 1H and 13C one‐ and two‐dimensional nmr spectra. A comparison is made with the corresponding amidines 2 .  相似文献   

17.
The atroposelective synthesis of axially chiral styrenes remains a formidable challenge due to their relatively lower rotational barriers compared to the biaryl atropoisomers. Herein, we describe the construction of axially chiral styrenes through PdII‐catalyzed atroposelective C?H olefination, using a bulky amino amide as a transient chiral auxiliary. Various axially chiral styrenes were produced with good yields and high enantioselectivity (up to 95 % yield and 99 % ee). Carboxylic acid derivatives of the resulting axially chiral styrenes showed superior enantiocontrol over the biaryl counterparts in CoIII‐catalyzed enantioselective C(sp3)?H amidation of thioamide. Mechanistic studies suggest that C?H cleavage is the enantioselectivity‐determining step.  相似文献   

18.
Simple quinine as an organocatalyst mediates the addition of various naphthols to halogenated quinones to afford non‐C2‐symmetrical, axially chiral biaryl products, which are promising compounds as chiral ligands and organocatalysts. The rotational barrier required to have two distinct atropisomers has been evaluated in the products generated from the addition of naphthols to various quinones by means of DFT calculations and HPLC. The use of halogenated quinones as reagents was necessary to have configurationally stable enantiomeric products which can be obtained in good yield and stereoselectivity. These compounds have also been prepared in gram quantities and recrystallized to near enantiopurity.  相似文献   

19.
The first enantioselective construction of a new class of axially chiral naphthyl‐indole skeletons has been established by organocatalytic asymmetric coupling reactions of 2‐naphthols with 2‐indolylmethanols (up to 99 % yield, 97:3 e.r.). This approach not only affords a new type of axially chiral heterobiaryl backbone, but also provides a new catalytic enantioselective strategy for constructing axially chiral biaryl scaffolds by making use of the C3‐electrophilicity of 2‐indolylmethanols.  相似文献   

20.
Axially chiral biaryls are ubiquitous structural motifs of biologically active molecules and privileged ligands for asymmetric catalysis. Their properties are due to their configurationally stable axis, and therefore, the control of their absolute configuration is essential. Efficient access to atropo‐enantioenriched biaryl moieties through asymmetric direct C?H activation, by using enantiopure sulfoxide as both the directing group (DG) and chiral auxiliary, is reported. The stereoselective oxidative Heck reactions are performed in high yields and with excellent atropo‐stereoselectivities. The pivotal role of 1,1,1,3,3,3‐hexafluoropropanol (HFIP) solvent, which enables a drastic increase in yield and stereoselectivity of this transformation, is evidenced and investigated. Finally, the synthetic usefulness of the herein disclosed transformation is showcased because the traceless character of the sulfoxide DG allows straightforward conversions of the newly accessed, atropopure sulfoxide‐biaryls into several differently substituted axially chiral scaffolds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号