首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 429 毫秒
1.
Monobenzene complexes of yttrium (Y), lanthanum (La), and lutetium (Lu), M(C(6)H(6)) (M = Y, La, and Lu), were prepared in a laser-vaporization supersonic molecular beam source and studied by pulsed-field ionization zero electron kinetic energy (ZEKE) spectroscopy and ab initio calculations. The calculations included the second-order perturbation, the coupled cluster with single, double, and perturbative triple excitation, and the complete active space self-consistent field methods. Adiabatic ionization energies and metal-benzene stretching frequencies of these complexes were measured for the first time from the ZEKE spectra. Electronic states of the neutral and ion complexes and benzene ring deformation were determined by combining the spectroscopic measurements with the theoretical calculations. The ionization energies of M(C(6)H(6)) are 5.0908 (6), 4.5651 (6), and 5.5106 (6) eV, and the metal-ligand stretching frequencies of [M(C(6)H(6))](+) are 328, 295, and 270 cm(-1) for M = Y, La, and Lu, respectively. The ground states of M(C(6)H(6)) and [M(C(6)H(6))](+) are (2)A(1) and (1)A(1), respectively, and their molecular structures are in C(2v) point group with a bent benzene ring. The deformation of the benzene ring upon metal coordination is caused by the pseudo Jahn-Teller interaction of (1(2)E(2)+1(2)A(1)+2(2)E(2)) e(2) at C(6v) symmetry. In addition, the study shows that spectroscopic behaviors of Y(C(6)H(6)) and La(C(6)H(6)) are similar to each other, but different from that of Lu(C(6)H(6)).  相似文献   

2.
Cyclopentadienyl dialuminum [Al2Cp, Cp = C5H5] was prepared in a pulsed laser ablation cluster beam source and identified with a time-of-flight photoionization mass spectrometer. The high-resolution electron spectrum of this complex was obtained using pulsed-field ionization zero electron kinetic energy (ZEKE) photoelectron spectroscopy. Three isomeric structures with two Al atoms residing on the same or opposite sites of the Cp plane were predicted by second-order M?ller-Plesset perturbation theory. A half-sandwich structure with an aluminum dimer perpendicular to the Cp plane was identified by the experiment. The ground electronic states of the neutral and ionized species are 2A' ' in Cs symmetry and 1A1 in C5v symmetry, respectively. In both the neutral and ionic states, one of the Al2 atoms binds with five carbons, and the metal-ligand bonding consists of orbital and electrostatic contributions. Ionization of the 2A' ' neutral state enhances the metal-ligand bonding but weakens the metal-metal interaction.  相似文献   

3.
Neodymium (Nd) complexes of benzene and naphthalene were synthesized in a laser-ablation supersonic molecular beam source. High-resolution electron spectra of these complexes were obtained using pulsed-field ionization zero electron kinetic energy (ZEKE) spectroscopy. Second-order M?ller-Plesset perturbation calculations were employed to aid spectral and electronic-state assignments. The adiabatic ionization energies were measured to be 38 081 (5) cm(-1) for Nd(benzene) and 37 815 (5) cm(-1) for Nd(naphthalene). For the Nd(benzene) complex, the observed frequencies of 831 and 286 cm(-1) were assigned to C-H out-of-plane bending and Nd(+)-C(6)H(6) stretching modes in the (6)A(1) ion state and 256 cm(-1) to the Nd-C(6)H(6) stretching mode in the (7)A(1) neutral state. To confirm these assignments, the ZEKE spectrum of the deuterated species was recorded, and the corresponding vibrational frequencies were measured to be 710 and 277 cm(-1) in the ion state and 236 cm(-1) in the neutral state. For the Nd(naphthalene) complex, the observed vibrational modes were C(10)H(8) bending (394 cm(-1)), Nd(+)-C(10)H(8) stretching (286 and 271 cm(-1)), Nd(+)-C(10)H(8) bending (80 cm(-1)), and C(10)H(8) twisting (105 cm(-1)) in the (6)A(') ion state and metal-ligand bending (60 cm(-1)) and ligand twisting (55 cm(-1)) in the (7)A(') neutral state. The formation of the ground state of the Nd(benzene) complex requires 4f → 5d and 6s → 5d electron excitation of the Nd atom, whereas the formation of the ground state of Nd(naphthalene) involves the 6s → 5d electron promotion.  相似文献   

4.
Al-uracil (Al-C4H4N2O2) was synthesized in a laser-vaporization supersonic molecular beam source and studied with pulsed field ionization-zero electron kinetic energy (ZEKE) photoelectron spectroscopy and density functional theory (DFT). The DFT calculations predicted several low-energy Al-uracil isomers with Al binding to the diketo, keto-enol, and dienol tautomers of uracil. The ZEKE spectroscopic measurements of Al-uracil determined the ionization energy of 43 064(5) cm-1 [or 5.340(6) eV] and a vibrational mode of 51 cm-1 for the neutral complex and several vibrational modes of 51, 303, 614, and 739 cm-1 for the ionized species. Combination of the ZEEK spectrum with the DFT and Franck-Condon factor calculations determined the preferred isomeric structure and electronic states of the Al-uracil complex. This isomer is formed by Al binding to the O4 atom of the diketo tautomer of uracil and has a planar Cs symmetry. The ground electronic states of the neutral and ionized species are 2A' ' and 1A', respectively. The 2A' ' neutral state has a slightly shorter Al-O4 distance than the 1A' ion state. However, the 1A' ion state has stronger metal-ligand binding compared to the 2A' ' state. The increased Al-O4 distance from the 2A' ' state to the 1A' state is attributed to the loss of the pi binding interaction between Al and O4 in the singlet ion state, whereas the increased metal-ligand binding strength is due to the additional charge-dipole interaction in the ion that surpasses the loss of the pi orbital interaction.  相似文献   

5.
Al- and Cu-imidazole are produced in laser-vaporization supersonic molecular beams and studied with pulsed field ionization-zero electron kinetic energy (ZEKE) spectroscopy and second-order M?ller-Plesset (MP2) theory. The sigma and pi structures of these complexes are predicted by MP2 calculations, but only the sigma structures are identified by the experimental measurements. For these sigma structures, adiabatic ionization energies and several vibrational frequencies are measured from the ZEKE spectra, the ground electronic states of the neutral and ionized complexes are determined by comparing the observed and calculated spectra, and the metal-ligand bond dissociation energies of the neutral states are derived by using a thermochemical relation. The measured vibrational modes include the metal-ligand stretch and bend and ligand ring distortions. The metal-ligand stretch frequencies of these transient complexes are compared with those of coordinately saturated, stable metal compounds, and the ligand-based distortion frequencies are compared with those of the free ligand. Al-imidazole has a larger bond dissociation energy than Cu-imidazole, although the opposite order was previously found for the corresponding ions. The weaker bonding of the Cu complex is attributed to the antibonding interaction and the electron repulsion between the Cu 4s and N lone-pair electrons.  相似文献   

6.
Copper complexes of pyrazine (1,4-C4H4N2), pyrimidine (1,3-C4H4N2), and pyridazine (1,2-C4H4N2) are produced in laser-vaporization supersonic molecular beams and studied by pulsed-field ionization zero electron kinetic energy (ZEKE) spectroscopy and second-order Moller-Plesset perturbation theory. Both sigma and pi complexes are considered by these ab initio calculations; only sigma structures are identified in these experiments. Adiabatic ionization energies and metal-ligand vibrational frequencies of the sigma complexes are measured from the ZEKE spectra. Metal-ligand bond dissociation energies of these complexes are obtained from a thermochemical cycle. The ionization energies follow the trend of Cu pyridazine (43,054 cm(-1)) < Cu pyrimidine (45,332 cm(-1)) < Cu pyrazine (46,038 cm(-1)); the bond energies are in the order of Cu pyridazine (56.2 kJ mol(-1)) > Cu pyrazine (48.5 kJ mol(-1)) approximately Cu pyrimidine (46.4 kJ mol(-1)). The stronger binding of pyridazine is due to its larger electric dipole moment and possibly bidentate binding.  相似文献   

7.
Scandium-benzene complexes, Sc-(C6H6)1,2 are produced by interactions between the laser-vaporized scandium atoms and benzene vapor in pulsed molecular beams, and identified by photoionization time-of-flight mass spectrometry and photoionization efficiency spectroscopy. The electron-spin multiplicities and geometries of these complexes and their ions are determined by combining pulsed field-ionization zero electron kinetic-energy spectroscopy and density-functional theory calculations. For scandium-monobenzene, a short-range quartet ground state is determined for the neutral complex, and a low-energy triplet state is probed for the ion. For the dibenzene complex, the neutral ground state is a doublet, and two low-energy ion states are singlet and triplet. The quartet and triplet states of scandium-monobenzene and the triplet state of scandium-dibenzene possess sixfold symmetry, whereas the doublet and singlet of the dibenzene complex have twofold symmetry. Moreover, ionization energies and metal-ring stretching wavenumbers are measured for both complexes.  相似文献   

8.
We report zero kinetic energy (ZEKE) photoelectron spectroscopy of benzo[a]pyrene (BaP) via resonantly enhanced multiphoton ionization (REMPI). Our analysis concentrates on the vibrational modes of the first excited state (S(1)) and those of the ground cationic state (D(0)). Similar to pyrene, another peri-condensed polycyclic aromatic hydrocarbon we have investigated, the first two electronically excited states of BaP exhibit extensive configuration interactions. However, the two electronic states are of the same symmetry, hence vibronic coupling does not introduce any out-of-plane modes in the REMPI spectrum, and Franck-Condon analysis is qualitatively satisfactory. The ZEKE spectra from the in-plane modes observed in the REMPI spectrum demonstrate strong propensity in preserving the vibrational excitation of the intermediate state. Although several additional bands in combination with the vibrational mode of the intermediate state are identifiable, they are much lower in intensity. This observation implies that the molecular structure of BaP has a tremendous capability to accommodate changes in charge density. All observed bands of the cation are IR active, establishing the role of ZEKE spectroscopy in mapping out far infrared bands for astrophysical applications.  相似文献   

9.
Polycyclic aromatic hydrocarbons are model systems for studying the mechanisms of lithium storage in carbonaceous materials. In this work, Li complexes of naphthalene, pyrene, perylene, and coronene were synthesized in a supersonic metal-cluster beam source and studied by zero-electron-kinetic-energy (ZEKE) electron spectroscopy and density functional theory calculations. The adiabatic ionization energies of the neutral complexes and frequencies of up to nine vibrational modes in the singly charged cations were determined from the ZEKE spectra. The metal-ligand bond energies of the neutral complexes were obtained from a thermodynamic cycle. Preferred Li∕Li(+) binding sites with the aromatic molecules were determined by comparing the measured spectra with theoretical calculations. Li and Li(+) prefer the ring-over binding to the benzene ring with a higher π-electron content and aromaticity. Although the ionization energies of the Li complexes show no clear correlation with the size of the aromatic molecules, the metal-ligand bond energies increase with the extension of the π-electron network up to perylene, then decrease from perylene to coronene. The trends in the ionization and metal-ligand bond dissociation energies of the complexes are discussed in terms of the orbital energies, local quadrupole moments, and polarizabilities of the free ligands and the charge transfer between the metal atom and aromatic molecules.  相似文献   

10.
Copper complexes of ethylenediamine (en), N-methylethylenediamine (meen), N,N-dimethylethylenediamine (dmen), N,N,N'-trimethylethylenediamine (tren), and N,N,N',N'-tetramethylethylenediamine (tmen) are synthesized in laser-vaporization supersonic molecular beams and studied by pulsed-field ionization zero electron kinetic energy (ZEKE) and photoionization efficiency spectroscopies and second-order Moller-Plesset perturbation theory. Precise ionization energies and vibrational frequencies of Cu-en, -meen, and -dmen are measured from the ZEKE spectra, and ionization thresholds of Cu-tren and -tmen are estimated from the photoionization efficiency spectra. The measured vibrational modes span a frequency range of 35-1646 cm(-1) and include metal-ligand stretch and bend, hydrogen-bond stretch, and ligand-based torsion. A number of low-energy structures with Cu binding to one or two nitrogen atoms are predicted for each complex by the ab initio calculations. The combination of the spectroscopic measurements and ab initio calculations has identified a hydrogen-bond-stabilized monodentate structure for the Cu-en complex and bidentate cyclic structures for the methyl-substituted derivatives. The change of the Cu binding from the monodentate to the bidentate mode arises from the competition between copper coordination and hydrogen bonding.  相似文献   

11.
Group 6 metal bis(benzene) sandwich complexes (M-bz(2): M=Cr, Mo, and W and bz=C(6)H(6)) were produced with laser vaporization molecular beam techniques and studied by pulsed-field ionization zero electron kinetic energy spectroscopy and density functional theory calculations. Each sandwich complex is in a D(6h) eclipsed configuration with (1)A(1g) and (2)A(1g) as the neutral and cationic ground electronic states, respectively. The adiabatic ionization energies for Cr-, Mo-, and W-bz(2) are measured to be 44,081(7), 44,581(10), and 43,634(7) cm(-1), respectively. The metal-benzene stretch and benzene torsion frequencies of the ion are measured to be 264, 277, and 370 cm(-1) and 11, 21, and 45 cm(-1) for Cr-, Mo-, and W-bz(2), respectively. In addition, a C-H out-of-plane bending mode is measured to be 787 cm(-1) for the Cr(+)-bz(2) complex, while a C-C in-plane bending mode is measured to be 614 cm(-1) for the W(+)-bz(2) complex. The unusual trend in the ionization energy and metal-benzene stretch frequency indicates strong relativistic effects on tungsten binding.  相似文献   

12.
Vanadium, niobium, and tantalum metal atoms, produced by laser ablation, are reacted with benzene vapor diluted in argon and codeposited onto a 7 K CsI window. The resulting reaction products are trapped, and the M(C6H6) and M(C6H6)2 complexes are identified by benzene isotopic substitution (C6H6, 13C6H6, C6D6). Density functional theory (DFT) frequency calculations are used to support molecular complex assignments. On the basis of the computed energies and a comparison of calculated and observed vibrational isotopic shifts, the ground electronic states and geometries are predicted. The bonding and electronic interactions in these molecules are discussed on the basis of the observed aromatic C-C breathing modes activated in the complexes.  相似文献   

13.
The vibrational structures of the electronic ground states ((approximately)X (2)A(2)) of furan, pyrrole, and thiophene cations have been studied by zero kinetic energy (ZEKE) photoelectron spectroscopic method. In addition to the strong excitations of the symmetric a(1) vibrational modes, other three symmetric vibrational modes (a(2), b(1), and b(2)) have been observed unambiguously. These results which cannot be explained by the Franck-Condon principle illustrate that the vibronic coupling and the Coriolis coupling may play important roles in understanding the vibrational structures of the five-membered heterocycle cations. The vibrationally resolved ZEKE spectra are assigned with the assistance of the density function theory calculations, and the fundamental frequencies for many vibrational modes have been determined for the first time. The first adiabatic ionization energies for furan, pyrrole, and thiophene were determined as 8.8863, 8.2099, and 8.8742 eV, respectively, with uncertainties of 0.0002 eV.  相似文献   

14.
The products obtained in the reaction of cobalt atoms in neat benzene or in a benzene/argon mixture at low temperature have been reinvestigated. At least three cobalt-containing species were detected by IR, namely, Co(C(6)H(6)), Co(C(6)H(6))(2), and Co(x)(C(6)H(6)), x>1. The IR bands were assigned to these complexes by monitoring their behavior as a function of (a) Co and C(6)H(6) concentration, (b) isotopic substitution, and (c) photoirradiation. We were able to analyze the sample in neat benzene by both electron paramagnetic resonance (EPR) and IR spectroscopy and to determine the magnetic parameters (g tensor and Co hyperfine interaction) for the Co(C(6)H(6))(2) sandwich compound. The large number of fundamental bands observed in the IR spectrum of Co(C(6)H(6))(2), the absorption pattern observed in the Co-ring stretching region of the IR spectrum of the mixed complex, Co(C(6)H(6))(C(6)D(6)) and the orthorhombic g-values extracted from the EPR spectrum are most consistent with nonequivalent benzene ligands in Co(C(6)H(6))(2), i.e., C(s) symmetry. A bonding scheme consistent with both the EPR and IR data for Co(C(6)H(6))(2) is discussed.  相似文献   

15.
Recently, we presented a molecular orbital (MO) model of aromaticity that explains, in terms of simple orbital-overlap arguments, why benzene (C(6)H(6)) has a regular structure with delocalized double bonds whereas the geometry of 1,3-cyclobutadiene (C(4)H(4)) is distorted with localized double bonds. Here, we show that the same model and the same type of orbital-overlap arguments also account for the irregular and regular structures of 1,3,5,7-cyclooctatetraene (C(8)H(8)) and 1,3,5,7,9-cyclodecapentaene (C(10)H(10)), respectively. Our MO model is based on accurate Kohn-Sham DFT analyses of the bonding in C(4)H(4), C(6)H(6), C(8)H(8), and C(10)H(10) and how the bonding mechanism is affected if these molecules undergo geometrical deformations between regular, delocalized ring structures and distorted ones with localized double bonds. The propensity of the pi electrons is always to localize the double bonds, against the delocalizing force of the sigma electrons. Importantly, we show that the pi electrons nevertheless determine the localization (in C(4)H(4) and C(8)H(8)) or delocalization (in C(6)H(6) and C(10)H(10)) of the double bonds.  相似文献   

16.
Calculations are performed to establish the ground electronic states of RbO2+, CsO2+, and FrO2. In the case of the cations, both linear and C2v orientations were considered; for FrO2, the two lowest electronic states, 2A2 and 2B2, were considered in C2v symmetry. In addition, calculations were also performed on the x2 A2 ground states of RbO2 and CsO2 to derive ionization energies. Binding energies and heats of formation are also derived. The bonding in FrO2 is found to be less ionic than that of RbO2 and CsO2.  相似文献   

17.
Ti- and V-bz2 (bz=C6H6) sandwich complexes have been prepared in a laser-ablation cluster beam source and studied by pulsed field ionization-zero electron kinetic energy photoelectron spectroscopy and theoretical calculations. The ground electronic states of the neutral Ti- and V-bz2 complexes are determined to be 1A1g and 2A1g, and their ionization energies are measured to be 5.732+/-0.001 and 5.784+/-0.002 eV, respectively. These neutral complexes have eta6 binding and are in an eclipsed D6h configuration with flat benzene rings. Ionization of the 1A1g and 2A1g neutral states of Ti- and V-bz2 yields the 2B1g and 3B1g ion states, respectively, in a D2h point group with slightly puckered benzene rings. In addition, the binding and structures of these two complexes are compared with other first-row transition metal bis(benzene) sandwiches.  相似文献   

18.
姬磊  唐颖  朱荣淑  唐碧峰  张嵩  张冰 《化学学报》2004,62(13):1211-1216,J002
利用飞行时间质谱装置研究了234和267nm激光作用下二溴甲烷、二溴乙烷、二溴丙烷和二溴丁烷分子的光解离过程.研究表明二溴代烷烃分子在紫外激光的作用下主要是断裂C—Br键解离出一个Br原子,并且存在两种可能的布居:基态Br(^2P3/2^0)和激发态Br^*(^2P1/2^0).通过共振增强多光子电离技术探测两种光解产物布居的分支比.对比得到了分子构型对称性不同的二溴代烷烃的分支比,提出了两种假设的光解离模型.  相似文献   

19.
Using a laser ablation/inert buffer gas ion source coupled with a reflectron time-of-flight mass spectrometer, the gas-phase reactions between the IVA group element ions M(+) (M = Si, Ge, Sn and Pb) and benzene seeded in argon gas were studied. In addition to the association reaction pathway (forming [M(C(6)H(6))(x)](+), x = 1, 2, etc.), benzene was dissociated to form complex ions [M(C(5)H(5))](+), [M(C(7)H(5))](+) and [M(C(9)H(x))](+) (x = 5, 7 and 9), etc. DFT theoretical calculations indicated that, in the association products [M(C(6)H(6))](+), the M atom is close to one carbon atom of benzene, while in most of the dissociation complexes, pentagonal structures (M/cyclopentadienyl derivatives) were formed, with the M atom situated near the fivefold axis of the five-membered ring. The bond patterns in these complexes are discussed.  相似文献   

20.
Ab initio density functional theory (DFT) calculations are reported for the chromium sandwich structure CrnR2, where n = 7 and R is the aromatic hydrocarbon hexabenzocoronene (C42H18). This system is remarkable in that the structure of the chromium sites strongly resemble those in chromium bis-benzene Cr1(C6H6)2, as judged by geometry and charge density properties. The electron localization function of the sandwich shows a hexagonally arrayed set of V(C, Cr, C) valence basins about each chromium atom with modification due to local site symmetry. This system satisfies an extension of the 18-electron rule to components of a conjugated molecular system. This idea is explored further by examining the electronic and geometric properties of the series CrnR2, where n and R are given by n = 1, benzene C6H6 as reference; n = 2, biphenyl (C6H5)2; n = 3, triphenylene C18H12; n = 3, coronene C24H18; and n = 4, dibenzopyrene C24H14. On the basis of electron counting and ring isolation, all the sandwich structures in this series could satisfy the extension of the 18-electron rule, with the exception of coronene, which was deliberately included. The DFT calculations predict spin-paired ground states for some but not all of the sandwich structures, implying that the Cr-ring interactions at work require understanding at a deeper level. Thus, while sandwiches with n = 1, n = 2, n = 4 and n = 7 have spin paired singlet ground states and appear to satisfy the rule, those with n = 3 (triphenylene, coronene) have antiferromagnetic singlet ground states and do not. This is attributed to nonuniformity in the electronic charge density of the rings of the isolated hydrocarbons and to a reduction of symmetry from D3h to C2v with a concomitant spin-charge density change in the sandwiches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号