首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
《电化学》2019,(5)
电催化水分解是一种高效制备清洁氢气能源的有效方法.开发高效、稳定、廉价、双功能的电催化剂用于水的氧化与还原反应一直以来都是具有挑战的课题.在这篇论文中,作者报道了一种生长在碳布上高活性的硒化镍微球.该催化剂通过对同时包含镍和硒元素的亚硒酸镍配合物进行电解制备.由于前驱分子同时含有两种有效元素,制备得到的硒化镍具有很好的形貌和元素分步均一性.制备得到的NiS e-EA/CC电极能够双功能催化水的氧化与还原.在154 mV析氢过电势下能达到10 mA·cm~(-2)的催化电流.同时,在250 mV析氧过电势下能达到20mA·cm~(-2)电催化电流.用该电极材料同时作为阴极和阳极制备的全电解水电解池能在1.53 V的电压下实现10mA·cm~(-2)的稳定电解电流.  相似文献   

2.
氢能源因其储量丰富、高效、零污染等特性而受到广泛关注.电解水产氢作为一种有效的获取氢能源的方式成为当前研究的重点.但由于电极表面反应过电势的存在极大增加了电解水的能耗,因此需要开发高效的电催化材料以提高电解水反应动力学.考虑到实际应用,设计和构筑在同一电解液中同时具有高效催化产氢和释氧能力的双功能催化材料更为重要且更具挑战.目前,越来越多的非贵金属基双功能催化材料被开发和报道,比如过渡金属硫化物、氧化物、层状双金属氢氧化物、碳化物、氮化物和磷化物等,其中又以磷化物的研究更为广泛.金属有机骨架化合物(MOFs)因其具有独特的性能(孔隙率高、超高比表面积、可调控的化学组分和孔道结构等)在能源转化等领域得到广泛应用.但是,基于MOFs材料转化的多组分过渡金属磷化物应用于全分解水体系的报道还比较少.先前的研究表明,优化催化材料的微纳结构和化学组成是提高材料催化性能的关键.我们利用三步法(晶体生长、自组装和磷化)设计并制备了一种基于MOFs转化的新型分级纳米复合材料CoP@ZnFeP.透射电子显微镜(TEM)结果显示,自组装形成的花状Co3O4@Fe-MOF-5中空结构在磷化后形貌能够很好地保持.X射线衍射(XRD)表明, CoP@ZnFeP纳米复合物是由大量的混合纳米晶体组成,主要包括Co2P, ZnP2和Fe2P.在碱性(1.0mol/L KOH)条件下, CoP@ZnFeP纳米复合物表现出优异的催化产氢(HER)和释氧(OER)性能,其释氢和产氧的启动电位分别为–50和148m V(vs.RHE),相应的Tafel斜率分别为76和53.9m V/decade.优异的电催化性能主要归功于复合材料的多级纳米结构组元(纳米粒子、纳米笼和纳米管),其有序的多孔结构和大的比表面积有利于电解液的渗透、气体的扩散和电子的转移.作为对比,我们利用相似方法制备了CoP和ZnFeP纳米粒子的机械混合物(CoP/ZnFeP).测试数据表明, CoP@ZnFeP分级复合材料的催化性能优于CoP/ZnFeP机械混合物.鉴于CoP@ZnFeP复合材料优异的催化性能,我们将其应用于全分解水体系.在两电极体系中,达到10m A/cm~2电流密度仅需1.6V电压,表明材料具有优异的全分解水性能.同时该复合物也显示出较好的稳定性,经过24h连续水解后,电解电位仅升高70m V.但同时我们也注意到电极表面剧烈产生的气泡会对电极材料的稳定性有严重影响.此项研究可为设计高效的非贵金属催化材料应用于能源转化和储存等领域提供较好的思路和借鉴.  相似文献   

3.
研究廉价且高效的水分解电催化剂对于氢能源的开发利用具有重要意义,过渡金属磷化物是最有前景的水分解双功能电催化剂之一。本研究采用先水热法,再低温磷化的简单的两步合成法,在三维镍网上生长CoP纳米珠链阵列,所生成的镍网(Nickel foam,NF)负载CoP纳米珠线阵列(CoP/NF),具有规则的形貌、较大的比表面积,在碱性条件下对氢气析出反应(HER)和氧气析出反应(OER)都表现出良好的电催化性能。在电流密度达到10 mA/cm~2时的过电位分别为280 mV(OER)及95 mV(HER)。利用此CoP/NF复合材料组成的双电极体系可以有效电解水,在电流密度为10 mA/cm~2时所需的施加电压仅为1.63 V,并且表现出非常高的稳定性。  相似文献   

4.
氢气因其能量密度高、零排放和可再生的特点被广泛认为是最有前景的能源.电解水是一种产生高纯氢气的有效途径.目前,高性能的促进水电解的催化剂主要是贵金属材料,例如贵金属铂.然而,高成本大大阻碍了贵金属材料在电催化水分解中的广泛应用.因此,我们致力于研究具有高活性的非贵金属催化剂.因为电催化水分解析氢反应更容易发生在质子浓度高的条件下,所以研究碱性条件下催化析氢比研究酸性条件下催化析氢更具挑战性.在工业应用中,酸性电解质溶液对仪器设备的腐蚀性比碱性溶液更大,因此研究应用在碱性溶液中的析氢催化剂更有发展前景.过渡金属磷化物被广泛地研究作为高性能析氢电催化剂,然而过渡金属磷化物作为析氢催化剂的稳定性通常不是很好.我们通过钼元素的引入,提高过渡金属磷化物作为析氢催化剂的稳定性.电化学催化效率同样受到材料形貌和导电性的影响.大的比表面积有利于暴露更多的活性位点,使活性位点与电解质溶液的接触更加充分,有利于催化剂和溶液之间的传质.据报道,金属磷化物具有良好的导电性是由于磷化物中存在金属-金属键.所以合成具有大比表面积形貌的过渡金属磷化物材料能够满足析氢电催化剂对比表面积和导电性的两个需求.界面效应是调节催化剂性能的一个有效方法.析氢催化剂常常存在吸附质子能力过强或过弱、稳定性不好等问题.这些问题可以通过界面效应来解决.本文通过形成磷化估和钼钴氧的界面来调节改善磷化钴表面原来的电子密度,以达到理想的氢吸附自由能;同时此界面效应还能起到稳定催化剂性能的作用.本文首先采用水热法合成了红毛丹状钼钴氧空心微米小球前驱体.在钼酸根离子的引导下,利用奥斯特瓦尔德熟化原理一步实现了红毛丹状空心结构.前驱体再以次亚磷酸钠为磷源进行气相磷化,得到产物红毛丹状磷化钴@钼钴氧空心微米小球.通过扫描电镜和透射电镜对其红毛丹状空心结构进行了表征.利用X射线衍射和X射线光电子能谱等手段表征了材料的物相组成和价态分布.电化学测试均使用电化学工作站完成.该材料在碱性电解质溶液中展现了极好的电化学催化析氢性能,在电流密度为10 mA cm^-2时对应的析氢过电位仅为62 mV.在1 MKOH溶液中10 mA cm^-2电流密度下测试55 h,过电位仅增大约17 mV,显示了非常强的碱性析氢稳定性.得益于磷化钴和钼钴氧之间的界面效应,以及特殊的三维空心结构,红毛丹状磷化钴@钼钴氧空心微米小球表现出优异的析氢催化性能和稳定性.  相似文献   

5.
氢能作为零碳排放能源是被公认的最清洁能源之一,如何有效可持续地产氢是未来人类步入氢能经济首先要解决的问题。电解水技术基于电化学分解水的原理,利用可再生电能或太阳能驱动水分解为氢气和氧气,被认为是最有前途和可持续性的产氢途径。然而,无论是光解水还是电解水,均需要高活性、高稳定性的非贵金属氢析出和氧析出催化剂以使水电解反应经济节能。本文介绍了我们研究所近三年在水电解方面的研究进展,其中着重介绍了:(ⅰ)氢析出催化剂,包括利用低温磷化过渡金属(氢)氧化物的方法制备过渡金属磷化物,同时过渡金属硫化物、硒化物以及碳化物等均被成功合成并被应用为有效的阴极析氢催化剂;(ⅱ)氧析出催化剂,主要包括金属磷化物、硫化物、氧化物/氢氧化物等;(ⅲ)双功能催化剂,主要包括过渡金属磷化物、硒化物、硫化物等。最后,总结展望了发展水电解非贵金属催化剂所面临的挑战与未来发展方向。  相似文献   

6.
氢能作为一种零碳排放的清洁能源,主要通过电解水的途径获得。电解水析氢过程所使用的贵金属Pt基催化剂非常稀缺和昂贵,因此开发具有高活性和稳定性的非贵金属催化剂仍然是一个巨大的挑战。自支撑型过渡金属磷化物析氢性能优异,加之有效结合了自支撑基底的诸多优势,有望成为可替代贵金属Pt基催化剂的优良析氢材料。本文详细介绍了自支撑型过渡金属磷化物的研究进展,着重论述了此类型电催化剂的析氢优势及作用机理:(1)自支撑基底3D集成框架导电性较强,可提供大量的电子转移通道,从而加速催化反应进程;(2)自支撑型过渡金属磷化物较大的比表面积将会暴露出更多的活性位点,进而促进催化反应的发生;(3)自支撑型过渡金属磷化物可以直接作为阴极进行析氢反应,避免传统涂覆法中催化剂容易从玻碳电极脱落的弊端。最后,总结了此类型电催化剂用于电解水反应所面临的问题和挑战,并进行了合理的展望。  相似文献   

7.
当今世界面临严峻的能源紧缺和环境污染问题,发展高效无污染的清洁能源替代传统化石能源成为近几十年科研工作者的研究热点.其中,氢能由于具有高燃烧值和产物无污染等优点成为理想的替代能源.光/电催化水分解产生氢气是最有效的制氢方法之一.目前,高活性的产氢催化剂仍以贵金属为主,但贵金属价格高昂和稀缺性等限制了其大规模应用,因此,开发和设计廉价、高效的非贵金属产氢催化剂变得尤为重要.为了提高非贵金属催化剂的催化活性,基于非贵金属的复合材料的构建被广泛研究.例如,通过非贵金属和碳材料的复合,能够提高比表面积和电子传输速率,优化活性位点的电子结构,从而提高催化活性.石墨炔(GDY)作为一种新兴碳材料,由sp2-和sp-杂化碳共同组成.由于GDY具有高度π共轭结构,大的比表面积和独特的双炔键,可作为载体与非贵金属离子相互作用形成复合材料,制备高效产氢催化剂.基于此,本文在室温下原位合成了强耦合相互作用的氧化镍硼/石墨炔(NiBi/GDY)催化剂,并将其应用于光/电催化产氢反应.在光催化产氢反应中,采用曙红为光敏剂,三乙醇胺为牺牲剂,可见光下NiBi/GDY的光催化产氢速率可达4.54 mmol g-1h-1,产氢速率分别是氧化镍硼/石墨烯(NiBi/graphene)和NiBi的2.9倍和4.5倍.此外,NiBi/GDY在1.0 M KOH溶液中也表现出良好电催化产氢性能,电流密度为400 mA/cm2时其过电位为478.0 mV,低于商业铂碳(505.3 mV@400 mA/cm2).NiBi/GDY在光/电催化产氢实验中表现出的较好催化性能可归因于NiBi和GDY之间强耦合相互作用对NiBi电子结构的优化.上述研究结果表明,石墨炔可作为理想载体制备高效的光/电催化剂,同时本文为设计高效稳定的非贵金属产氢催化剂提供了一定的借鉴意义.  相似文献   

8.
目前,在可见光照射下光催化产氢是一条解决能源短缺的理想途径.该途径实现工业化的两个关键因素是得到低成本的光催化剂和高的产氢效率.非贵金属助催化剂代替贵金属可大大降低光催化剂的成本.通过简单的方法大规模合成并组装半导体和非贵金属助催化剂以形成复合光催化剂可进一步降低成本.本文采用大规模和低成本的共沉淀法合成了磷化物/CdS光催化剂,实现了光催化产氢.当负载CoP和Mo P助催化剂后,光催化产氢活性得到大幅度提高.其中CoP/CdS和Mo P/CdS的最佳产氢量分别为140和78μmol/h,并分别为CdS的7.0倍和4.0倍,分别为Pt/CdS的2.0倍和1.1倍.这说明磷化物CoP和Mo P是具有优良催化活性的低成本非贵金属助催化剂,可以代替贵金属助催化剂应用在光催化产H_2中.在制备磷化物/CdS时,先将两种磷化物反应原料分别在水热反应釜和马弗炉中煅烧合成前驱体,再分别在管式炉氮气和氢气氛围中进行磷化得到磷化物Mo P和CoP.然后,将得到的Mo P和CoP分别溶解在Cd(NO_3)_2·4H_2O溶液中,在搅拌状态下逐滴加入Na_2S溶液形成沉淀,即可得到复合物磷化物/CdS.CoP/CdS和Mo P/CdS的HRTEM观察显示,磷化物助催化剂与CdS半导体紧密结合,证明了共沉淀法制备助催化剂/半导体复合光催化剂的有效性.磷化物与CdS的紧密结合促进了光激发电子从CdS向磷化物转移,从而大大提高了光催化产氢活性.这项工作为低成本大规模制备光催化剂和光催化产H_2实现工业化提供了一条可行性思路.  相似文献   

9.
过渡金属氮掺杂碳基催化剂已成为替代铂基氧还原反应(ORR)电催化剂的理想选择。本文通过静电纺丝技术制备了高比表面、高度分散的钴原子配位氮掺杂的碳纳米纤维催化剂(Co-N/C)。X射线衍射(XRD)和高分辨率透射电镜(HRTEM)结果证实Co元素高度分散于制备的Co-N/C催化剂中。X射线光电子能谱结果表明N元素主要以吡啶N和石墨N形式存在。该Co-N/C催化剂对ORR反应呈现出较高的电催化活性,其氧还原起始和半波电位分别为0.92 V和0.80 V(相对于标准氢电极),接近于商业化Pt/C催化剂的性能。以制备的Co-N/C催化剂作为阴极,25℃下锌空气燃料电池的开路电位1.54 V、最大功率密度达到了190 m V·cm~(-2)表明该催化剂具有良好的应用前景。  相似文献   

10.
光电化学分解水可将太阳能转换为绿色的氢能,为目前的能源危机和环境问题提供了一种理想的解决方案.在分解水反应中,涉及四空穴过程的产氧半反应是制约性能的关键步骤,往往需要在半导体表面沉积电催化剂以加速产氧反应动力学.因此,全面理解电催化剂在光电化学分解水体系中的作用至关重要.在目前的产氧电催化剂中,过渡金属羟基氧化物电催化剂(MOOH,M=Fe,Co,Ni)因其环保、廉价、高效以及稳定的特性,已被广泛用于半导体光阳极分解水器件中.而且,MOOH可用简单的电沉积方法沉积在光电极表面,易于大面积制备.然而,电沉积法制备的MOOH具有复杂的结构,对其作用机制的全面理解更加困难.因此,本文以电沉积MOOH修饰的硅基光阳极(n+p-Si/SiOx/Fe/FeOx/MOOH)作为模型,研究了不同电催化剂对硅光阳极光电化学产氧性能的影响.实验发现电催化剂的界面优化在电催化剂修饰的光电极中发挥着重要作用,这是因为优化的界面可以提升界面电荷传输,提供更多的催化反应活性位点以及更高的本征催化活性,从而更有利于光解水性能的提升.该项研究揭示了电催化剂在光解水器件中的作用,并为今后高效光解水器件的设计提供了一定指导.首先在多晶n+p-Si基底上热蒸镀了一层30 nm的金属Fe膜,并通过电化学活化将Fe膜表面转换为FeOx得到Fe/FeOx(记作aFe)界面层,然后利用电沉积方法制备MOOH表面修饰层,最终得到n+p-Si/SiOx/aFe:MOOH光阳极.X射线光电子能谱、拉曼光谱以及扫描电子显微镜表面元素成像的表征结果均证实电极表面由于界面层金属Fe元素的掺杂而形成了Fe1-xNixOOH.在模拟太阳光下用于光解水产氧时,n+p-Si/SiOx/aFe:NiOOH电极的起始电位为~1.01 VRHE(相对于可逆氢电极的电势),在1.23 VRHE下的光电流为38.82 mA cm-2,显著优于n+p-Si/SiOx/aFe、n+p-Si/SiOx/aFe:FeOOH以及n+p-Si/SiOx/aFe:CoOOH三个对比样品,且其稳定性达到75 h.另外,我们发现n+p-Si/SiOx/aFe:MOOH电极的光电化学产氧性能均显著高于n+p-Si/SiOx/aFe电极,且p++-Si/SiOx/aFe:MOOH的电催化产氧性能也高于p++-Si/SiOx/MOOH,不仅证明了aFe界面层对Si与MOOH层之间的界面接触作用的有效调控,而且表明双电催化剂体系(aFe:MOOH)的电催化产氧活性高于单电催化剂(MOOH).热力学分析表明,n+p-Si/SiOx/aFe:MOOH光阳极的光电压大小与其光解水产氧性能并不一致,从而排除了热力学因素对性能的关键影响.进一步从塔菲尔斜率、电化学活性表面积和电化学阻抗谱对各电极的动力学进行了分析,证明了动力学因素在上述光阳极产氧性能中的主导作用.同时发现,由于aFe:NiOOH双电催化剂具有更高的本征电催化产氧性能,提供了更多的表面活性位点以及更有效地促进了光生载流子的传输,对动力学的提升效果更显著,从而使n+p-Si/SiOx/aFe:NiOOH光阳极表现出最高的光解水产氧性能.  相似文献   

11.
Transition metal phosphide(TMP) based electrocatalysts possessing special crystal and electronic structures attract broad attention in the field of electrocatalysis.Immense effort is made to optimize TMP catalysts aiming to satisfy the electrochemical catalysis performance.In this work,an environmentally friendly in situ green phosphating strategy and spatial limiting effect of the RuCo precursor is employed to fabricate the ruthenium nanoclusters anchored on cobalt phosphide hollow microspheres(Ru NCs/Co2P HMs).The obtained Ru NCs/Co2P HMs electrocatalysts exhibit high hydrogen evolution reaction(HER) activity at wide pH ranges,which require an overpotential of 77 mV to achieve the current density of 10 mA/cm2 in 0.5 mol/L H2SO4 and 118 mV in 1.0 mol/L KOH.Besides,the multifunctional Ru NCs/Co2P HMs exhibit good oxygen evolution reaction(OER) activity with an overpotential of 197 mV to reach the current density of 10 mA/cm2 in 0.5 mol/L H2SO4,which is below that of the commercial RuO2 electrocatalyst(248 mV).A two-electrode electrolyzer is assembled as well,in acid electrolyte,it achieves a current density of 10 mA/cm2 at a voltage of 1.53 V,which is superior to that of the benchmark of precious metal-based electrolyzer(1.58 V).  相似文献   

12.
Earth-abundant transition metal-based catalysts have been extensively investigated for their applicability in water electrolysers to enable overall water splitting to produce clean hydrogen and oxygen. In this study a Fe−Co based catalyst is electrodeposited in 30 seconds under vigorous hydrogen evolution conditions to produce a high surface area material that is active for both the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER). This catalyst can achieve high current densities of 600 mAcm−2 at an applied potential of 1.6 V (vs RHE) in 1 M NaOH with a Tafel slope value of 48 mV dec−1 for the OER. In addition, the HER can be facilitated at current densities as high as 400 mA cm−2 due to the large surface area of the material. The materials were found to be predominantly amorphous but did contain crystalline regions of CoFe2O4 which became more evident after the OER indicating interesting compositional and structural changes that occur to the catalyst after an electrocatalytic reaction. This rapid method of creating a bimetallic oxide electrode for both the HER and OER could possibly be adopted to other bimetallic oxide systems suitable for electrochemical water splitting.  相似文献   

13.
Active nanocomposites synthesized by the electrochemical approach play a vital role in energy generation, conversion, and storage technologies. Recently, scientists began to explore the use of earth-rich transition metal-based materials to replace precious metal-based catalysts. Transition metals (TMs) based nickel (Ni) and their pnictides compounds such as phosphides and selenides exhibit good activity for hydrogen evaluation reaction (HER) and the entire water electrolysis process. In this study, we first prepared Ni(OH)2 and grown its layer on Ni foam (NF) and treated it with selenide (Se) and phosphide (P) then nickel-based selenide-phosphide catalyst (Ni–P–Se) was prepared by simultaneous selenization and phosphidation process for the first time. The as-obtained composite was then analyzed by X-ray diffraction (XRD), scanning electron microscope (SEM), elemental mapping and transmission electron microscope (TEM) means to study the composition, structure, and micro-morphology of materials. Furthermore, we also observed electrocatalytic water splitting activity using electrochemical cell. The results of electrochemical tests depicted that the selenization and phosphidation treatments significantly enhanced the electrocatalytic HER activity of the starting materials. The overpotentials required for Ni–P–Se to reach 10 ?mA ?cm?2 and 100 ?mA ?cm?2 were only 242 ?mV and 282 ?mV. The Tafel slope of Ni–P–Se is 151 ?mV dec?1, which is lower than that of nickel phosphide, selenide, and hydroxide indicating that selenide-phosphide enhances the HER reaction kinetics of the material, which in turn increases hydrogen output rate as compared with previous studies.  相似文献   

14.
The development of highly efficient, inexpensive, abundant and non-precious metal electrocatalysts is the lifeblood of the hydrogen production industry, especially the hydrogen production industry by electrolysis of water. A Fe-Co-S/NF bifunctional electrocatalyst with nanoflower-like structure was synthesized on three-dimensional porous nickel foam through one-step hydrothermal and one-step high-temperature sulfuration operations, and the material displays high-efficiency electrocatalytic performance. As a catalyst for the hydrogen evolution reaction, Fe-Co-S/NF can drive a current density of 10 mA/cm2 at an overpotential of 143 mV with a Tafel slope of 80.2 mV/dec. When it was used as an oxygen evolution reaction catalyst, it exhibits good OER reactivity with a low Tafel slope (82.6 mV/dec) and with requiring only 117 mV overpotential to drive current densities up to 50 mA/cm2. In addition, the Fe-Co-S/NF//Fe-Co-S/NF electrolytic cell was assembled, an electrolysis voltage of 1.64 V is required to drive a current density of 50 mA/cm2, which is one of the most active catalysts reported so far. This work indicates that the introduction of S, P and Se treating processes could effectively improve electrical conductivity of the material and enhance the catalytic activity of the material. This work offers an effective and convenient method for improving the morphology of the catalyst, increasing the surface area of the catalyst and developing high-efficiency and low-cost catalysts.  相似文献   

15.
Electrochemical water splitting can provide a promising avenue for sustainable hydrogen production. Highly efficient electrocatalysts toward the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are extremely important for the practical application of water splitting technology. Herein, a one-step annealing strategy is reported for the fabrication of a metal–organic framework-derived bifunctional self-supported electrocatalyst, which is composed of two-dimensional N-doped carbon-wrapped Ir-doped Ni nanoparticle composites supported on Ni foam (NiIr@N-C/NF). The resultant NiIr@N-C/NF displays excellent electrocatalytic performance in 1.0 m KOH, with low overpotentials of 32 mV at 10 mA cm−2 for the HER and 329 mV at 50 mA cm−2 for the OER. Particularly, the HER-OER bifunctional NiIr@N-C/NF needs only 1.50 V to yield 10 mA cm−2 for overall water splitting.  相似文献   

16.
Iron is the cheapest and one of the most abundant transition metals. Natural [FeFe]‐hydrogenases exhibit remarkably high activity in hydrogen evolution, but they suffer from high oxygen sensitivity and difficulty in scale‐up. Herein, an FeP nanowire array was developed on Ti plate (FeP NA/Ti) from its β‐FeOOH NA/Ti precursor through a low‐temperature phosphidation reaction. When applied as self‐supported 3D hydrogen evolution cathode, the FeP NA/Ti electrode shows exceptionally high catalytic activity and good durability, and it only requires overpotentials of 55 and 127 mV to afford current densities of 10 and 100 mA cm2, respectively. The excellent electrocatalytic performance is promising for applications as non‐noble‐metal HER catalyst with a high performance–price ratio in electrochemical water splitting for large‐scale hydrogen fuel production.  相似文献   

17.
采用溶剂热法制备了多种二维过渡金属硫化物(TMDCs), 在合成过程中通过调控反应前驱体的滴加速率来控制所得TMDCs的形貌和结构. 然后采用高温热处理来提高TMDCs的结晶性, 从而提升了其电催化活性. 在酸性电解液中进行电催化析氢性能测试. 结果表明, “花状”结构的金属性二维二硫化铌(NbS2)具有最佳的催化活性和稳定性, 在电流密度为10 mA/cm2时, 其过电位仅为146 mV, 持续工作24 h后电流密度几乎不衰减. 研究发现, 可充分暴露面内活性位点的“花状”结构以及高温处理后材料导电性的提高是二维NbS2具有优异电催化性能的主要因素.  相似文献   

18.
氢能是一种绿色、 高效的二次能源, 在廉价的非贵金属催化剂的辅助下, 电解水制氢以其低成本和高效率受到广泛关注. 过渡金属磷化物因其独特近似球形三角棱柱单元结构能够暴露出更多配位不饱和表面原子, 因此在电解水制氢中表现出优异的催化活性和强耐腐蚀性. 本文综述了过渡金属磷化物的制备方法和在电催化析氢中的应用和性能的改善策略. 最后讨论了过渡金属磷化物催化剂存在的一些亟待解决的问题, 并展望了其未来的发展方向.  相似文献   

19.
析氧反应(OER)在能量转换和储存技术中扮演着重要角色,例如在水分解和金属空气电池中,电催化剂的发展是主要任务.本文采用钴基的类沸石咪唑酯骨架结构材料(ZIFs)作为前驱体,在氩气保护气氛下,成功制备了氮掺杂钴镍磷多孔碳多面体电催化剂(CoNiP/NC).首先,采用ZIF-67作为前驱体,将ZIF-67和六水合硝酸镍按照一定比例在乙醇溶液中搅拌30 min,达到掺杂镍的目的,然后将其在不同温度下煅烧,得到的样品在300 oC氩气保护气氛下磷化,得到最终产物.所有电催化剂均通过控制碳化和磷化作用温度获得.通过对样品ZIF-67Ni进行EDS分析,证明镍成功负载到ZIF-67上,XPS结果也证明了这一点.由扫描电镜图可以看出,前驱体ZIF-67在负载Ni之后,样品表面形貌发生明显变化,表面变得粗糙,有明显的条文.磷化后样品的XRD结果说明磷化方法是成功的,同时XPS结果表明样品中有P元素存在.从扫描电镜图片可以明显看出,样品在煅烧之后表面形貌发生明显变化,由棱角明显变为表面粗糙,但是并未发生明显的团聚现象.XPS显示,样品CoNiP/NC700(700指煅烧温度(oC))中存在钴、镍、磷、碳、氮、氧这六种元素,另外还分析了其高分辨图.结果显示,电催化剂CoNiP/NC700表现出优越的电催化效率,在碱性溶液的电流密度10 mA/cm~2条件下,其开路电压约为220 mV,过电位约为300 mV.掺杂镍之后的样品性能比煅烧ZIF-67的样品好,说明镍对于提高析氧反应效率有益;同样,磷化之后样品的OER性能也有所提高.相比较而言,对于磷化之后的样品,煅烧温度是700℃时,OER催化效率最好.磷化杂化材料优越的电催化活性是由于其强的电子耦合相互作用而产生的协同效应,在镍、磷、碳等方面具有较强的协同效应.相互联系的非定形碳不仅固定了活性碳化合物以避免聚集,而且还为电子转移提供了传导通道.对样品CoNiP/NC700进行了稳定性测试,结果表明其稳定性较好,在循环10 h之后,活性仅下降了4%.这一研究表明,该复合电催化剂可能是电催化氧化反应的一个很有前景的候选催化剂.  相似文献   

20.
《中国化学快报》2020,31(10):2641-2644
The high cost and low reserves of noble metals greatly hinder their practical applications in new energy production and conversion. The exploration of cost-effective alternative electrocatalysts with the ability to drive hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is extremely significant to promote overall water splitting. Herein, ultrathin CoSe2/CNTs nanocomposites have been synthesized by a facile two-step method, where the ultrathin Co-MOF (metal organic-framework) decorated with cable-like carbon nanotubes (CNTs) (Co-MOF/CNTs) was initially fabricated, and followed a low-temperature selenization process. The ultrathin CoSe2 nanosheets as well as the superior conductivity of CNTs synergistically resulted in abundant active sites and enhanced conductivity to boost the electrocatalytic activity. The as-prepared CoSe2/CNTs electrocatalysts exhibited an overpotential of 190 mV and 300 mV vs. reversible hydrogen electrode (RHE) at a current density of 10 mA/cm2 for the HER and OER in alkaline solution, respectively, and demonstrated superior durability. Furthermore, the as-prepared bifunctional CoSe2/CNTs electrocatalysts can act as cathode and anode in an electrolyzer, showing a cell voltage of 1.75 V at 10 mA/cm2 for overall water splitting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号