首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this work a PVC membrane electrode based on bis(N-3-methyl phenyl salicylidenaminato)copper(II)as ionophore was prepared.The electrode was tested by inorganic anions and showed good selectivity for thiocyanate ion.This sensor showed Nerstian behavior with a slope of a-59.3 mV per decade at 25℃.The proposed electrode exhibited a wide linear range from 1.0 × 10~(-6) mol/L to 1.0× 10~(-1) mol/L with a detection limit of 5.0×10~(-7) mol/L.The electrode response was independent of pH in the range of 4.0-10.0.The response time is about 9-21s,and the electrode can be used for over 60 days without considerable deterioration.The prepared sensor was applied as an indicator electrode in potentiometric titration of SCN with Ag~+ ion and to determine the thiocyanate in samples of urine and saliva.  相似文献   

2.
The characteristics,performance and application of membrane electrode based on ion associate of diclofenac with base dye Safranine T are described.The electrode response to diclofenac has the sensitivity of 47±1.0 mV decade~(-1)over the range of 5×10~(-5)to 5×10~(-2)mol/L at pH 6-12,and the detection limit of 3.2×10~(-5)mol/L.The electrode is easy assembled at a relatively low cost has fast response time(2-4 s)and can be used for a period up to 3.5 months without any considerable divergence in potential.The proposed sensor displayed good selectivity for diclofenac in the presence of different substances.It was used to determine diclofenac in pharmaceuticals by means of the standard addition method.  相似文献   

3.
A new ion selective electrode for salicylate based on N,N'-(aminoethyl)ethylenediamide bis(2-salicylideneimine)binuclear copper(Ⅱ)complex[Cu(Ⅱ)_2-AEBS]as an ionophore was developed.The electrode has a linear range from1.0×10~(-1) to 5.0×10~(-7) mol·L~(-1) with a near-Nernstian slope of(-55±1)mV/decade and a detection limit of 2.0×10~(-7) mol·L~(-1) in phosphorate buffer solution of pH 5.0 at 25℃.It shows good selectivity for Sal~- and displaysanti-Hofmeister selectivity seoquence:Sal~->SCN~->ClO_4~->I~->NO_2~->Br~->NO_3~->CI~->SO_3~(2-)>SO_4~(2-)The proposed sensor based on binuclear copper(Ⅱ)complex has a fast response time of 5-10 s and can be used forat least 2 months without any major deviation.The response mechanism is discussed in view of the alternating cur-rent(AC) impedance technique and the UV-vis spectroscopy technique.The effect of the electrode membranecompositions and the experimental conditions were studied.The electrode has been successfully used for the deter-mination of salicylate ion in drug pharmaceutical preparations.  相似文献   

4.
In this study,a new Er3+ sensor based on N-(benzyloxycarbonyloxy)succinimide(BCS) as a neutral carrier has been constructed. The sensor exhibits potential linear response with a Nernstian slope of 20.5±0.4 mV/decade in the concentration range of 1.0×10-6to 1.0×10-2mol/L of Er3+.It has a very short response time(<10 s),detection limit of 6.3×10-7 mol/L and a good selectivity relative to a wide variety of other metal ions including common alkali,alkaline earth,heavy,and transition metal ions.It can be used in the pH range of 2.5-10.6 without any considerable divergence in potentials.The proposed sensor was successfully applied for the recovery of Er3+ ions spiked in tap and river water samples.  相似文献   

5.
In this research,a new poly(vinyl chloride)(PVC) membrane sensor for Ho3+ ion based on N-phenyl-2-(thiophen-2- ylmethylene)hydrazinecarbothioamide(PHC) as an ionophore was prepared.This sensor demonstrated good selectivity and sensitivity towards the holmium ion in comparison with variety of cations,including alkali,alkaline earth,transition and heavy metal ions.The effect of membrane composition and pH on the response properties of the electrode was investigated.In detail,the suggested sensor exhibited a Nernstian behavior(with a slope of 20.4±0.3 mV decade-1) in the range of 1.0×10-6 to 1.0×10-2 mol/L with a detection limit of 6.2×10-7 mol/L.The response time was relatively quick in the whole concentration range(~5 s).The sensor usage was found to be at least 10 weeks in a pH range of 3.3-10.9.It was successfully applied in determination of fluoride ions in mouth wash preparations.  相似文献   

6.
A new modified carbon paste electrode based on cyclam as a modifier was prepared for the determination of Co(Ⅱ) ions. The proposed electrode shows a Nernstian slope 28.4 mV per decade over a wide concentration range 5.0×10-6_1.0×10-1 mol/L of Co2 ions with detection limit 2.5×10-6 mol/L. The sensor exhibits good selectivities for Co2 over a wide variety of other cations. It can be used as an indicator electrode in potentiometric titration of cobalt(Ⅱ) ions as well as in direct determination of cobalt(Ⅱ) ions in wastewater of acidic cobalt electroplating bath. The electrode shows Nernestian behavior in a solution of 25% ethanol.  相似文献   

7.
A novel electrochemical sensor was fabricated by electrodeposition of gold nanoparticles on a poly(L-methionine)(PMT)-modified glassy carbon electrode(GCE) to form a nano-Au/PMT composite-modified GCE(nano-Au/PMT/GCE).Scanning electron microscopy and electrochemical techniques were used to characterize the composite electrode.The modified electrode exhibited considerable electrocatalytic activity towards the oxidation of dopamine(DA) and uric acid(UA) in phosphate buffer solution(pH = 7.00).Differential pulse voltammetry revealed that the electrocatalytic oxidation currents of DA and UA were linearly related to concentration over the range of 5.0 ×10–8 to 10–6 mol/L for DA and 7.0 × 10–8 to 10–6 mol/L for UA.The detection limits were 3.7 × 10–8mol/L for DA and 4.5 × 10–8 mol/L for UA at a signal-to-noise ratio of 3.According to our experimental results,nano-Au/PMT/GCE can be used as a sensitive and selective sensor for simultaneous determination of DA and UA.  相似文献   

8.
A PVC membrane electrode based on copper(Ⅱ) bis(N-2-bromophenylsalicyldenaminato) as ionophor was prepared.The ion selective electrode was tested by inorganic anions and showed a good selectivity for iodide ion.This sensor exhibited Nernstian behavior with a slope of—57.8 mV per decade at 25℃.The proposed electrode showed a linear range from 1.0×105 to 1.0×10-1 mol/L with a detection limit of 5.0×10-6 mol/L.The electrode response was independent of pH in the range of 3.0- 10.0.The proposed sensor was applied to determine the iodide in water and antiseptic samples.  相似文献   

9.
N1,N2-Bis[1-(2-hydroxyphenyl)methylidene]ethanedihydrazide(MEH) was used as new compound which plays the role of an excellent ion carrier in the fabrication of a Ho(Ⅲ) membrane electrode.The electrode shows a good selectivity for Ho(Ⅲ) ion with respect to most common cations including alkali,alkaline earth,transition and heavy metal ions.This electrode has a wide linear dynamic range from 1.0×10-6 to 1.0×10-2 mol/L with a Nernstian slope of 19.8±0.3 mV per decade and a low detection limit of 5.8×10-7 mol/L in the pH range of 2.5-9.8,while the response time was rapid(<10 s).The suggested sensor was applied to the determination of Ho(Ⅲ) ions in tap water and river water samples.  相似文献   

10.
The macrocyclic ligand,15-crown-5,was used as an ionophore for fabrication of a polyvinyl chloride(PVC) based membrane sensor for Ag(Ⅰ) cation.For construction of the Ag(Ⅰ) cation selective electrode the best response characteristics were obtained using the composition: 15-crown-5/PVC/o-nitrophenyloctylether(NPOE)/sodium tetraphenyl borate(NaTPB) in the percentage ratio of 5.6/30/60.5/3.9(w/w/w/w).The electrochemical sensor shows a linear dynamic range 1.0 10 7–1.0 10 1mol/L and a Nernstian slope of 58.9 0.5 mV/decade with a detection limit of 8.09 10 8mol/L for Ag(Ⅰ) cation.It has a fast response time of 10 s and can be used for at least 8 weeks without any considerable divergences in its potential response.It was successfully used as an indicator electrode in potentiometric titration of Ag(Ⅰ)cation with I and Cl anions and also for the determination of this metal cation in radiology waste water.  相似文献   

11.
A highly sensitive electrochemical sensor was prepared for the determination of L-cysteine using a modified multiwall carbon nanotubes paste electrode in the presence of 3,4-dihydroxycinnamic acid(3,4-DHCA) as a mediator, based on an electrocatalytic process. The results indicate that the electrode is electrocatalytically efficient for the oxidation of L-cysteine in the presence of 3,4-DHCA. The interaction between the mediator and L-cysteine can be used for its sensitive and selective determination. Using chronoamperometry, the catalytic reaction rate constant was calculated to be 2.37 × 102 mol–1 L s–1. The catalytic peak current was linearly dependent on the L-cysteine concentration in the range of 0.4–115 μmol/L. The detection limit obtained by linear sweep voltammetry was 0.25 μmol/L. Finally, the modified electrode was examined as a selective, simple, and precise new electrochemical sensor for the determination of L-cysteine in real samples.  相似文献   

12.
A novel electrochemical sensor based on the immobilization of tyrosinase(tyr) onto gold nanoparticles(nano-Au) and thioctic acid amide(T-NH2) self-assembled monolayers(SAMs)-modified gold electrode has been developed for the determination of bisphenol A(BPA).It was found that the nano-Au could significantly enhance the electrochemical response of tyr/nano-Au/T-NH2/Au electrode to BPA,and the enhancement effect of nano-Au on the current response was also related to the enzyme.The results indicated that the biosensor could be used as a detector for BPA determination with a linear range from3.99 ×10-7mol/L to 2.34 ×10-4mol/L and a detection limit of 1.33×10-7mol/L.In addition,this biosensor showed good reproducibility.  相似文献   

13.
A derivative of thiazole(AAT) has been explored as a sensing material for preparation a selective Lu(III) PVC-based membrane sensor.The proposed sensor exhibits a Nernstian response over a wide concentration range from 1.0×10-6 to 1.0×10-1 mol/L of Lu(Ⅲ) and the detection limit is 5.7×10-7 mol/L.The sensor response is independent of pH of the solution in the range 3.2-8.8 and possesses the advantages of fast response time(~6) and in particular,good selectivity to the lutetium ions with regard to most common metal ions,and especially all lanthanide ions.  相似文献   

14.
The application of p-aminophenol as a suitable mediator, as a sensitive and selective voltammetric sensor for the determination of hydrazine using square wave voltammetric method were described. The modified multiwall carbon nanotubes paste electrode exhibited a good electrocatalytic activity for the oxidation of hydrazine at pH = 7.0. The catalytic oxidation peak currents showed a linear dependence of the peaks current to the hydrazine concentrations in the range of 0.5–175 μmol/L with a correlation coefficient of 0.9975. The detection limit (S/N = 3) was estimated to be 0.3 μmol/L of hydrazine. The relative standard deviations for 0.7 and 5.0 μmol/L hydrazine were 1.7 and 1.1%, respectively. The modified electrode showed good sensitivity and selectivity. The diffusion coefficient (D = 9.5 × 10–4 cm2/s) and the kinetic parameters such as the electron transfer coefficient (α = 0.7) of hydrazine at the surface of the modified electrode were determined using electrochemical approaches. The electrode was successfully applied for the determination of hydrazine in real samples with satisfactory results.  相似文献   

15.
A new ion selective electrode for salicylate based on N,N'-(aminoethyl)ethylenediamide bis(2-salicylideneimine) binuclear copper(Ⅱ) complex [Cu(Ⅱ)2-AEBS] as an ionophore was developed. The electrode has a linear range from 1.0 × 10^-1 to 5.0 ×10^-7 mol·L^- 1 with a near-Nemstian slope of ( - 55 ±1 ) mV/decade and a detection limit of 2.0 × 10-7 mol·L^-1 in phosphorate buffer solution of pH 5.0 at 25 ℃. It shows good selectivity for Sal^- and displays anti-Hofmeister selectivity sequence: Sal^-〉SCN^-〉 ClO4^- 〉I^-〉 NO2^- 〉Br^-〉 NO3^- 〉Cl^-〉 SO3^2- 〉 SO4^2- The proposed sensor based on binuclear copper(Ⅱ)complex has a fast response time of 5-10 s and can be used for at least 2 months without any major deviation. The response mechanism is discussed in view of the alternating current (AC) impedance technique and the UV-vis spectroscopy technique. The effect of the electrode membrane compositions and the experimental conditions were studied. The electrode has been successfully used for the determination of salicylate ion in drug pharmaceutical preparations.  相似文献   

16.
To realize highly selective relay recognition of Fe3+ and H2PO4- ions, a simple benzimidazole-based fluorescent chemosensor(L) was designed and synthesized. Sensor L displays rapid, highly selective, and sensitive recognition to Fe3+ in H2O/DMSO(1:1, v/v) solutions. The in situ-generated L-Fe3+ complex solution exhibits a fast response and high selectivity toward dihydrogen phosphate anion via the Fe3+ displacement approach. The detection limits of sensor L to Fe3+ and L-Fe3+complex to H2PO4- anion were estimated to be 1.0 × 10-9 mol/L. Notably, the sensor was retrievable to indicate dihydrogen phosphate anions with Fe3+, and H2PO4-, in turn, increased. This successive recognition feature of sensor L makes it a potential utility for Fe3+ and H2PO4- anion detection in aqueous media.  相似文献   

17.
An electrochemical sensor for doxycycline hyclate(DC)detection with high sensitivity and good selectivity is reported.The sensor was fabricated by electro-polymerization of molecularly imprinted polymers(MIPs)in the presence of DC onto multi-walled carbon nanotubes modified glassy carbon electrode(MWCNTs/GCE).The MWCNTs can significantly increase the current response of the sensor,leading to enhanced sensitivity.The MIPs provide selective recognition sites for DC detection.The experimental parameters,such as the polymer monomer concentration,supporting electrolyte pH,the time for electro-polymerization and the incubation time of the sensor with DC were optimized.Under optimized experimental conditions,the sensor displayed a linear range of 0.05μmol/L-0.5μmol/L towards DC detection,with the detection limit of 1.3×10^-2μmol/L.The sensor was successfully applied for recovery test of DC in human serum samples.  相似文献   

18.
A sensitive and selective electrochemical sensor for the determination of glutathione(GSH) was developed using a modified multiwall carbon nanotube paste electrode with 3,4 dihydroxy cinnamic acid as a mediator.This modified electrode showed very high electrocatalytic activity for the anodic oxidation of GSH.Under the optimized conditions,the electrocatalytic peak current showed a linear relationship with GSH concentration in the range of 0.5-400.0 μmol/L with a detection limit of 0.1 μmol/L GSH.The relative standard deviations for seven successive assays of 5.0 and 25.0 μmol/L GSH were 2.2% and 2.7%,respectively.The modified electrode was used for the determination of GSH compounds in real urine samples.  相似文献   

19.
L-Ascorbate anion electro-oxidation on a silver electrode in hydroxide solution in the absence and presence of sodium polysulfide of concentrations from 1 × 10-5 to 4.5 × 10-4 mol/L was studied using cyclic voltammetry and electrochemical impedance spectroscopy.Both hydroxide and polysulfide ions inhibited L-ascorbate ion oxidation,with the poisoning effect of polysulfide ion being more pronounced in the potential range of-0.3 to-0.2 V/SCE.The time constants for L-ascorbate ion oxidation in the absence and presence of polysulfide were,10-3 to 1 × 10-2 s and 1 × 10-4 to 1 × 10-2 s,respectively depending on the potential used for the impedance analysis.Based on the cyclic voltammetry findings,a mechanism for L-ascorbate oxidation in the presence of polysulfide ions was proposed.Impedance calculations based on the kinetic analysis can account for the occurrence of a negative impedance in a potential region around-0.2 V/SCE in the Nyquist polts.  相似文献   

20.
A new approach for a simple electrochemical detection of PAT gene fragment is described. Poly(2,6-pyridinedicarboxylic acid) (PDC) modified glassy carbon electrode (GCE) was prepared by potential scan electropolymerization in an aqueous solution. Mg2 ions were incorporated by immer-sion of the modified electrode in 0.5 mol/L aqueous solution of MgCl2 to complete the preparation of a generic "activated" electrode ready for binding the probe DNA. The ssDNA was linked to the conduct-ing polymer by forming a bidentate complex between the carboxyl groups on the polymer and the phosphate groups of DNA via Mg2 . DNA immobilization and hybridization were characterized with dif-ferential pulse voltammetry (DPV) by using methylene blue (MB) as indicator and electrochemical im-pedance spectroscopy (EIS). The EIS was of higher sensitivity for DNA detection as compared with voltammetric methods in our strategy. The electron transfer resistance (Ret) of the electrode surface in EIS in [Fe(CN)6]3-/4- solution increased after the immobilization of the DNA probe on the Mg/PDC/GCE electrode. The hybridization of the DNA probe with complementary DNA (cDNA) made Ret increase further. The difference between the Ret at ssDNA/Mg/PDC/GCE and that at hybridization DNA modified electrode (dsDNA/Mg/PDC/GCE) was applied to determine the specific sequence related to the target PAT gene with the dynamic range comprised between 1.0 × 10-9 and 1.0 × 10_5 mol/L. A detection limit of 3.4 × 10-10 mol/L of oligonucleotides can be estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号