首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Sulfonated ion irradiated (H+ and He2+) PEEK films were synthesized with a range of cross-linking density and a variety of sulfonation degrees. Batch adsorption experiments were carried out at an initial pH of 6.0 ± 0.2, initial concentrations of Pb2+ and 137Cs ions of 10.0 mg L−1 and 5500 Bq L−1, respectively. The maximum adsorption capacity was 60 mg g−1 for Pb2+, and the distribution coefficient reached 6200 cm3 g−1 for 137Cs. The results indicated that sulfonation could be used to recycle low cross-linked PEEK and prepare efficient adsorbents to remove toxic Pb2+ and 137Cs from polluted aqueous solutions.

  相似文献   

2.

In this paper, polycyclotriphosphazene coated carbon nanotubes (PZS-OH/CNT) composite material has been synthesized via a facial method. The prepared PZS-OH/CNT was characterized by FTIR, BET, zeta potential and SEM. The material was investigated as an adsorbent for the adsorption towards U(VI) from aqueous solutions. Several parameters like solution pH, contact time and temperature were used to evaluate the sorption efficiency. The results indicated that the adsorption capacity of uranium on PZS-OH/CNT was improved from 41.48 mg g−1 for CNT to 338.98 mg g−1 due to the presence of functional groups on PZS-OH/CNT. The U(VI) sorption on PZS-OH/CNT was well fitted to the Langmuir adsorption isotherm and pseudo-second kinetics models. The thermodynamic parameters (ΔH, ΔS and ΔG) showed the U(VI) adsorption on CNT and PZS-OH/CNT was endothermic and spontaneous in nature.

  相似文献   

3.

The removal of U(VI) by biochar fibers from aqueous solutions has been investigated prior and after MnO2 surface-deposition. The removal efficiency has been studied as a function of pH, U(VI) concentration, ionic strength, temperature and contact time. The fibers morphology and surface complexes were analyzed by SEM–EDX and FTIR, respectively. Evaluation of the experimental data indicates that the composite presents extraordinary adsorption capacity (qmax = 3.8 mmol g−1, 904 mg g−1), which is attributed to the formation of inner-sphere surface complexes, and that the adsorption reaction is a relatively fast, endothermic and entropy-driven process.

  相似文献   

4.
Biochar was prepared from corncob-to-xylose residue (CCXR) by KOH activation and anaerobic pyrolysis method. The effect of activation temperature on the microstructure of the biochar was studied. Results showed that the biochar prepared at 850°C (850NBC) possessed high specific surface area and exhibited excellent adsorption property. The maximum adsorption capacity of 2249 mg g−1 was obtained when 850NBC was used for treating methylene blue (MB) solution. Adsorption isotherm fittings revealed that Langmuir and Freundlich models were applicable to 850NBC adsorption process, and the adsorption process was limited by adsorption site and the biochar surface functional groups. Furthermore, 850NBC showed good adsorption property when it was used to treat the other organic dyes of Congo red (751 mg g−1), Orange II (735 mg g−1), Indigo carmine (662 mg g−1) and Methyl Orange (465 mg g−1). Biochar 850NBC also possessed an acceptable recyclability which maintained 68.7% absorption capacity after 6 cycles when it was used to treat MB solution. These results proposed that 850NBC is expected to be a promising potential adsorbent for treating organic dyes waste water.  相似文献   

5.

Stereoscopic porous microspheres based gellan gum (GG–Ca) were successfully prepared by sol–gel method using ethyl acetate as porogen and glutaraldehyde as crosslinker. The obtained GG–Ca microspheres were mainly of mesoporous with the average pore diameter was about 4 nm. It displayed a higher ability for uranium removal. In addition, the uranium adsorption process was endothermic and spontaneous following a pseudo-second-order and the adsorption isotherm was the best fit with the Freundlich model with maximum uranium capacity of 202.26 mg g−1. The UO2+ adsorption mechanism is ion-exchange with Ca2+ based on SEM, EDX and XPS data analysis.

  相似文献   

6.

In this paper, three-dimensional graphene (3DG) electrode material was prepared by hydrothermal reduction using graphene oxide as precursor. Its morphology and structure were characterized by SEM, BET, XRD, Raman, FTIR and TG, and its electrochemical performance was also measured. The results showed that 3DG possessed hierarchical pore structure, large specific surface area, high specific capacitance and low impedance. Using 3DG as electrode material for electrosorption of UO22+, it showed that the saturated adsorption capacity can reach up to 113.80 mg g?1 and the adsorption rate is 0.32 mg g?1 min?1 at a given optimal applied voltage of 1.8 V.

  相似文献   

7.

In order to separate and pre-concentrate uranium from aqueous phase, a novel silica-based adsorbent was prepared by impregnating nalidixic acid (HNA) into a macroreticular silica/polymer composite support (SiO2-P) with a mean diameter of 60 μm. Adsorption behavior of uranium from aqueous solution onto the adsorbent was studied. Experimental results indicated that HNA/SiO2-P showed strong adsorption for uranium in a wide range of pH from 3.5 to 10.0, and the maximum adsorption capacity was 35.4 mg g−1. In addition, HNA/SiO2-P exhibited good selectivity for U(VI) and showed weak or bare adsorption affinity to foreign ions. Kinetic and isotherm of uranium adsorption were in accordance with the pseudo-second-order kinetic model and Langmuir isotherm adsorption model, respectively. Moreover, U(VI) sorption was found to be an endothermic reaction and spontaneous under experimental state. The synthesized adsorbent showed an admirable stability at lower pH values in aqueous solution.

  相似文献   

8.
《印度化学会志》2021,98(8):100111
A facile magnetic chitosan composite used for heavy metal ions removal was prepared. The adsorbents with large specific area and rich carboxyl groups exhibited good removal of Cd(II) ions and could be easily separated with magnetic separation. The adsorption capacity of Cd(II) was 48 ​mg ​g−1 and the removal efficiency reached 86.7% after five cycles. Thus, the prepared magnetic chitosan composite could act as a potential adsorbent for Cd(II) ions removal.  相似文献   

9.
P-nitrophenol (PNP), a hazardous phenolic material, should be eliminated from water in order to prevent damage to the marine ecosystem, animals as well as humans. Although adsorption seems to become the most widely used strategy, an effective and strong-capacity adsorbent to minimize PNP under the approved concentration is essential to discovering. In this study, a class of porous adsorbents composite was developed for the PNP removal from water. AC-NH2-MIL-101(Cr) has chosen to boost the removal of PNP from water owing to extremely porous and stable in water. The fabricated composite has 2049 m2.g−1 large surface area and 0.93 cm3.g−1 pore volume. The adsorption kinetics and isotherms were investigated. AC-NH2-MIL-101(Cr) was found to exhibit an adsorption capacity of ~ 18.3 mg g−1. The mechanism for this strong adsorption performance was suggested and related to affinity NO2 groups of PNP and the unsaturated chromium site of AC-NH2-MIL-101(Cr), the coulombic interaction via the hydrogen bond between the PNP and AC-NH2-MIL-101(Cr) and π-π stacking interaction. AC-NH2-MIL-101(Cr) composite also displayed exceptional stability and reusability after a successive PNP removal processes. This study provides new insight into developing and synthesizing extremely effective nanoporous material for organic contaminants disinfection from waste water based on MOFs.  相似文献   

10.

The amino-hydroxyapatite (HAP-NH2) was synthesized by grafted amino functional groups onto hydroxyapatite. The uranium adsorption performance of HAP-NH2 was studied under different conditions. The results indicated that HAP-NH2 possessed high adsorption capacity (96 mg g−1), wide pH values range (2–8) and fast adsorption rate (20 min). The adsorption kinetic and adsorption isotherm models of HAP-NH2 revealed that the uranium adsorption process was belonged to chemical adsorption. Furthermore, the main forces between uranium ions and HAP-NH2 were attributed to hydroxyl, amino and phosphorous functional groups.

  相似文献   

11.
In the present work, Mn‐doped CuO‐NPs‐AC was prepared by a simple method, characterized using various techniques such as FESEM, EDX, XRD, PSD, and pHpzc and finally used for the adsorption of malachite green (MG) and methyl orange (MO) in a number of single and binary solutions. A series of adsorption experiments were conducted to investigate and optimize the influence of various factors (such as different pH, concentration of MG and MO, adsorbent mass, and sonication time) on the simultaneous adsorption of MG and MO using response surface methodology. Under optimal conditions of pH 10, adsorbent dose of 0.02 g, MG concentration of 30 mg L?1, MO concentration of 30 mg L?1, and sonication time of 4.5 min at room temperature, the maximum predicted adsorption was observed to be 100.0%, for both MG and MO, showing that there is a favorable harmony between the experimental data and model predictions. The adsorption isotherm of MO and MG by Mn‐doped CuO‐NPs‐AC could be well clarified by the Langmuir model with maximum adsorption capacity of 320.69 mg g?1 and 290.11 mg g?1 in the single solution and 233.02 mg g?1 and 205.53 mg g?1 in the binary solution by 0.005 g of adsorbent mass for MG and MO, respectively. Kinetic studies also revealed that both MG and MO adsorption were better defined by the pseudo‐second order model for both solutions. In addition, the thermodynamic constant studies disclosed that the adsorption of MG and MO was likely to be influenced by a physisorption mechanism. Eventually, the reusability of the Mn‐doped CuO‐NPs‐AC after six times showed a reduction in the adsorption percentage of MG and MO.  相似文献   

12.
《先进技术聚合物》2018,29(7):1988-2001
The present study reports synthesis and characterization of a new acrylamide‐based monomer containing rhodanine moiety, N‐3‐amino‐thiazolidine‐4‐one‐acrylamide (ATA). Poly(ATA)‐grafted magnetite nanoparticles (poly(ATA)‐g‐MNPs) were prepared using surface‐initiated atom transfer radical polymerization of the monomer on Fe3O4 nanoparticles. The grafted nanoparticles were characterized by Fourier transform infrared analysis, scanning electron microscopy, X‐ray diffraction, and vibrating sample magnetometry. The amount of the grafted polymer was 209 mg g−1, as calculated from thermogravimetric analysis experiment. The capability of poly(ATA)‐g‐MNPs to remove Co(II) cations was shown under optimal conditions of contact time, pH, adsorbent dosage, and initial Co(II) concentration. About 86% of the Co(II) cations were removed over 7 minutes. The adsorption kinetics obeyed the pseudo–second‐order kinetic equation, and the Langmuir isotherm model best described the adsorption isotherm with a maximum adsorption capacity of 3.62 mg g−1. The thermodynamic investigation showed spontaneous nature of the adsorption process (ΔG = −2.90 kJ mol−1 at 25°C ± 1°C). In addition, the poly(ATA)‐g‐MNPs were regenerated by simply washing with an aqueous 0.1M HCl solution. The study of the reusability of the prepared magnetic sorbent revealed that the sorbent can be reused without a significant decrease in the extraction efficiency and be recovered by 95.4% after 7 cycles. These findings suggest that the grafted nanoparticles are stable and reusable adsorbent and can be potentially applied to water treatment in efficient removal of Co(II) cations.  相似文献   

13.

The efficiency of activated carbons prepared from corncob, to remove asphaltenes from toluene modeled solutions, has been studied in this work. The activating agent effect over carbonaceous solid preparation , and also temperature effect on the asphaltenes adsorption on the prepared activated carbons, was studied. The asphaltene adsorption isotherms were determined, and the experimental data were analyzed applying the Langmuir, Freundlich, Redlich–Peterson, Toth and Radke–Prausnitz and Sips models. Redlich–Peterson model described the asphaltenes isotherm on the activated carbons better. The asphaltenes adsorption capacities at 25° for activated carbons were: 1305 mg g?1, 1654 mg g?1 and 559.1 mg g?1 for GACKOH, GACKP and GACH3PO4, respectively. Thermodynamic parameters such as ΔG°, ΔH°, and ΔS° were also evaluated from the adsorption isotherms in asphaltene solutions from toluene solutions, and it was found that the adsorption process was spontaneous and exothermic in nature. Kinetic parameters, reaction rate constant and equilibrium adsorption capacities were evaluated and correlated for each kinetic model. The results show that asphaltene adsorption is described by pseudo-second-order kinetics, suggesting that the adsorption process is chemisorption. The adsorption calorimetry was used to analyze the type of interaction between the asphaltenes and the activated carbons prepared in this work, and their values were compared with the enthalpic values obtained from the Clausius–Clapeyron equation.

  相似文献   

14.
The adsorption process of 3-chloro phenol from aqueous solution on a activated carbon prepared from African palm stone and which presents a specific surface area of 685 m2 g−1, a greater quantity of total acid groups and a pHPZC of 6.8 is studied. The adsorption isotherms are determined at pH values of 3, 5, 7, 9 and 11. The adsorption isotherms are fitted to the Langmuir model and the values of the maximum quantity adsorbed that are between 96.2 and 46.4 mg g−1 are obtained along with the constant KL with values between 0.422 and 0.965 L mg−1. The maximum quantity adsorbed diminishes with the pH and the maximum value for this is a pH of 5. The immersion enthalpies of the activated carbon in a 3-chloro phenol solution of constant concentration, of 100 mg L−1, are determined for the different pH levels, with results between 37.6 and 21.2 J g−1. Immersion enthalpies of the activated carbon in function of 3-chloro phenol solution concentration are determined to pH 5, of maximum adsorption, with values between 28.3 and 38.4 J g−1, and by means of linearization, the maximum immersion enthalpy is calculated, with a value of 41.67 J g−1. With the results of the immersion enthalpy, maximum quantity adsorbed and the constant KL, establish relations that describe the adsorption process of 3-chloro phenol from aqueous solution on activated carbon.  相似文献   

15.
Co-pyrolysis of straw and Ca(OH)2 is a feasible modification method to improve the adsorption capacity of biochar for Cd. However, few studies have quantitatively analyzed the contribution of different adsorption mechanisms of alkali-modified biochar. In this study, the alkali-modified (Ca) biochar were prepared by co-pyrolyzing lime (Ca(OH)2) and soybean straw (SBB) or rape straw (RSB) at 450 °C. The adsorption mechanism was investigated by a series of experiments and was provided by quantitative analysis. The maximum adsorption capacities of Cd2+ by Ca-SBB and Ca-RSB were calculated to be 78.49 mg g?1 and 49.96 mg g?1, which were 1.56 and 1.48 times higher than SBB (50.40 mg g?1) and RSB (33.79 mg g?1), respectively. Compared with the original biochar (SBB, RSB), alkali-modified biochar (Ca-SBB and Ca-RSB) were found to have faster adsorption kinetics and lower desorption efficiencies. The mechanism study indicated that Ca(OH)2 modification effectively enhanced the contribution of ion exchange and decreased the contribution of functional groups complexation. After Ca(OH)2 modification, precipitation and ion exchange mechanisms dominated Cd2 + absorption on Ca-SBB, accounting for 49.85% and 34.94% of the total adsorption, respectively. Similarily ion exchange and precipitation were the main adsorption mechanism on Ca-RSB, accounting however for 61.91% and 18.47% of total adsorption, respectively. These results suggested that alkali-modified biochar has great potential to adsorp cadmium in wastewater.  相似文献   

16.
A new bi-functionalized xerogel is fabricated and then was identified by 29Si CP MAS NMR, SEM, FTIR, and nitrogen adsorption–desorption approaches. As-prepared xerogel efficiency for simultaneous uptake of methylene blue (MB) and Pb2+ ions from aqueous solution is investigated. Individual and combination effects of operating variables (xerogel mass, contact time and initial MB and Pb2+ ion concentration) on the retention performance is achieved with central composite design (CCD) and upgraded through response surface method (RSM). Batch equilibrium outcomes uncovered that MB and Pb2+ ions adsorption onto hybrid composite could be all around depicted by Langmuir isotherm model contrasted with Freundlich equation. Howbeit, the column trials reported that the breakthrough capacities of MB and Pb(II) are observed to be 512 mg.g−1 and 400 mg.g−1 respectively. XPS and FTIR investigations uncovered that the main mechanism of lead uptake ought to be credited to the chelation with –NH2 and ion exchange with –SH groups in the xerogel frameworks. While the MB adsorption system is proposed to be electrostatic attractions, π-π stacking interactions and hydrogen bonds. The work undertaken in this research highlights the major role of the as-synthesized xerogel for treatment of industrial wastewater.  相似文献   

17.
Uranium(VI) was removed from aqueous solutions using carbon coated Fe3O4 nanoparticles (Fe3O4@C). Batch experiments were conducted to study the effects of initial pH, shaking time and temperature on uranium sorption efficiency. It was found that the maximum adsorption capacity of the Fe3O4@C toward uranium(VI) was ∼120.20 mg g−1 when the initial uranium(VI) concentration was 100 mg L−1, displaying a high efficiency for the removal of uranium(VI) ions. Kinetics of the uranium(VI) removal is found to follow pseudo-second-order rate equation. In addition, the uranium(VI)-loaded Fe3O4@C nanoparticles can be recovered easily from aqueous solution by magnetic separation and regenerated by acid treatment. Present study suggested that magnetic Fe3O4@C composite particles can be used as an effective and recyclable adsorbent for the removal of uranium(VI) from aqueous solutions.  相似文献   

18.
Thin film composite (TFC) membranes were prepared from sulfonated poly(phthalazinone ether sulfone ketone) (SPPESK) as a top layer coated onto poly(phthalazinone ether sulfone ketone) (PPESK) ultrafiltration (UF) support membranes. The effects of different preparation conditions such as the SPPESK concentration, organic additives, solvent, degree of substitution (DS) of SPPEK and curing treatment temperature and time on the membrane performance were studied. The SPPESK concentration in the coating solution was the dominant factor for the rejection and permeation flux. The TFC membranes prepared from glycerol as an organic additive show better performance then those prepared from other additives. The rejection increased and the flux decreased with increasing curing treatment temperatures. The salt rejections of the TFC nanofiltration (NF) membranes increased in the order MgCl2 < MgSO4 < NaCl < Na2SO4. TFC membranes showed high water flux at low pressure. SPPESK composite membranes rejections for a 1000 mg L−1 Na2SO4 feed solution was 82%, and solution flux was 68 L m−2 h−1 at 0.25 MPa pressure.  相似文献   

19.
An organic polymeric resin was synthesized by anchoring p ‐aminobenzoic acid onto macroporous chloromethylated polystyrene beads, and was used for Zn(II) removal from aqueous solutions. The resin exhibited an initially rapid adsorption property for Zn(II) with equilibrium time of 10 h and the maximum adsorption capability approached 184.5 mg g−1. Optimum pH was 4.5. The mechanism of adsorption was investigated using kinetic, isotherm and thermodynamic models. The adsorption kinetic data were described well by a pseudo second‐order model with R 2 of 0.997. There was a negative ΔG (−17.98 kJ mol−1) and positive ΔH (13.58 kJ mol−1). HCl solution (1.0 mol l−1) could achieve an elution rate of 100%. The experimental data were well fitted by the Thomas model with R 2 of 0.9826. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.

This work describes comparative study on the application of Li4Ti5O12 (LTO) as anode materials for lithium-ion batteries which were successfully prepared by sol-gel synthesis with the use of two titanium sources. One of them was anatase-type titanium dioxide (TiO2), whereas the second was tetrabutyl titanate (TBT). Both obtained LTO materials were very similar in terms of their crystallinity and purity. In turn, the sample synthetized with TBT source revealed better particle dispersibility, and its particles were slightly lower in size. These particular features resulted in higher Li+ diffusion coefficient and better kinetic of Li+ ions during charge transfer reactions for the LTO synthetized with TBT source. This reflected in specific capacitance values for both electrodes which equalled 150 mAh g−1, 120 mAh g−1, and 63 mAh g−1 for TBT-LTO and 120 mAh g−1, 80 mAh g−1, and 58 mAh g−1 for TiO2-LTO at C-rates of 1, 5, and 10 C, respectively.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号