首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Although amphiphilicity is an integral component for the applications of polyHIPEs (PHs), it is challenging to produce hydrophobic PHs from hydrophilic monomers. Herein, hydrophobic polyurethane (PU) PHs have been fabricated from a water‐soluble mannitol within block copolymer surfactant‐stabilized, nonaqueous high internal phase emulsions (HIPEs). These highly porous, interconnected, macroporous PU PHs were hydrophobic with water contact angles between 102° and 140°, demonstrating that water‐soluble monomers could be used for fabrication of hydrophobic PHs. The block copolymer surfactant acted not only as the HIPE stabilizer, but also as a monomer, enhancing hydrophobicity and overcoming some drawbacks imposed by conventional inert stabilizers. The solvents used for PU PH synthesis and purification were easily recovered and reused, showing that nonaqueous HIPE templating for PU PH preparation is an efficient and facile route. The PU PHs were investigated for oil spill reclamation and they were demonstrated to be an ideal candidate for such an application. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1315–1321  相似文献   

2.
A series of emulsion‐templated fluorinated polymers (polyHIPEs) were first synthesized with introducing 2‐(perfluorohexyl)ethyl methacrylate (PEM) to the external phase of water‐in‐styrene high internal phase emulsion (HIPE) templates. The morphology (i.e., void size and its distribution) of these porous materials could be tuned simply by changing PEM and/or surfactant amount. The synergistic effect between the surface chemistry and surface architecture allowed the polyHIPEs to possess hydrophobicity with a water contact angle of 151°. The superhydrophobicity and oleophilicity of the polyHIPEs, together with their highly open porous structure, make the material a very competitive candidate as a filtration material for oil/water separation in practice with the efficiency of separating dichloromethane from the oil/water mixture of 95%. Such oil/water separating capacity was maintained after 10 cycles of filtration of oil/water, indicating the cyclic usage of the polyHIPE is feasible. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1508–1515  相似文献   

3.
The influence of butyl acrylate (BA) and methyl methacrylate (MMA) on hydroxyl functionalized latexes was investigated. The hydrophobicity of the monomer feed was varied via the BA/MMA ratio. In addition to monitoring the effect of hydrophobic monomer feed on secondary nucleation, the polymerization kinetics and final latex properties were also obtained for comparison. Five different BA to MMA molar ratios were combined with five 2‐hydroxyethyl methacrylate (HEMA) concentrations (0, 10, 20, 30 and 40 mol% in monomer composition). All latexes were synthesized through seeded semibatch emulsion polymerization process. Particle size distributions and average particle sizes of the latexes were determined by dynamic light scattering (DLS) and qualitatively compared with transmission electron microscope (TEM) images. The BA to MMA ratio significantly influences the boundary HEMA concentration at which homogeneous secondary nucleation occurs. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2190–2202  相似文献   

4.
A new class of porous materials, having hydrophobic scaffold embedded with aligned porous hydrophilic domains, was in situ fabricated through combination of emulsion‐templated method and unidirectional freezing technique. A water‐in‐oil high internal phase emulsion (HIPE) was prepared with the mixture of styrene and divinylbenzene as continuous phase and a poly(vinyl alcohol) (PVA) aqueous solution as dispersed phase. After polymerization of the continuous phase and subsequently unidirectional freezing, the dispersed phase, a macroporous poly(styrene/divinylbenzene) embedded with an aligned PVA domain, was obtained. The effects of the polymerization temperature, PVA concentration, and freezing rate on these porous materials were investigated. It was found that the PVA domain size and the aligned channel size were dependent on the polymerization temperature, the PVA concentration, and freezing rate. The fabrication method in this work, combining of unidirectional freezing and emulsion template, not only allows to prepare hydrophobic–hydrophilic polyHIPEs having a sea island structure but also dramatically improves the stiffness and specific surface area of the resulting polyHIPEs. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
The commercial hyperbranched aliphatic polyols (Hn) were modified by thioglycolic acid (TA) and hexafluorobutyl acrylate (HFBA) or dodecafluoroheptyl methacrylate (DFHMA) to prepare a series of fluorinated hyperbranched polyesters. For comparison, a linear fluorinated polymer, poly(n-BMA-co-DFHMA), was synthesized through the copolymerization of n-butyl methacrylate (BMA) and DFHMA. The molecular structures were characterized by 1H NMR spectroscopic analysis. The synthesized polymers were incorporated into UV-curable formulations as additives, and exposed to a UV lamp. After UV curing, the wettability of the films was investigated by contact angle measurement with water and 1-bromonaphthalene. The results showed that both the hydrophobicity and oleophobicity were greatly enhanced. Moreover, the fluorinated hyperbranched polymers possessed better water and oil repellency than the copolymer poly(n-BMA-co-DFHMA) at a very low concentration. The surface F/C ratio values of the cured films were detected by XPS analysis, and the film with TAH20-DFHMA showed the highest F/C ratio value, indicating its most efficient aggregation effect at the film surface.  相似文献   

6.
Graft copolymerization of 2-hydroxyethyl methacrylate(HEMA) and mixtures of HEMA with methyl methacrylate (MMA) onto hide powder was attempted using ceric ammonium nitrate as initiator, with a view to optimize the conditions for graft copolymerization. Percent grafting and grafting efficiency were calculated for various variables such as monomer concentration, initator concentration and mole ratio of HEMA to MMA. Rp, Rg and Rh (rates of polymerization, grafting and homopolymerization respectively) were also evaluated. It was observed that Rp increased linearly with increasing concentration of MMA except at very low concentrations of the monomer. An explanation is given for the effect of variables on extent of grafting and grafting efficiency.  相似文献   

7.
Copolymerization of 2-hydroxyethyl methacrylate (HEMA) with methylacrylate (MA), ethylacrylate (EA), n-butylacrylate (BA) and methylmethacrylate (MMA) were studied in bulk at 60° using benzoyl peroxide as initiator. The monomer reactivity ratios were determined using several methods and are briefly discussed.  相似文献   

8.
陈宇 《高分子科学》2013,31(7):1046-1055
Multiarm star block copolymers hyperbranched polyethylenimine-b-poly(2-hydroxyethyl methacrylate) (HPEI-b-PHEMA) with average 28 PHEMA arms have been prepared by atom transfer radical polymerization (ATRP) of HEMA in a mixed solvent of methanol and water using a core-first strategy. The hyperbranched macroinitiator employed was prepared on the basis of well-defined hyperbranched polyethylenimine with Mw/Mn of 1.04 by amidation with 2-bromo-isobutyryl bromide. The polymerization condition was optimized to prepare star copolymers with narrow dispersity, and the variables included the volume ratio of methanol to water, the molar ratio of initiating site to CuCl and the molar ratio of [CuCl]:[CuBr2]. Under the optimized polymerization condition, the lowest Mw/Mn value of the obtained star copolymers was around 1.3. Kinetic analysis showed that an induction period existed in the polymerization of HEMA. After this induction period, a linear dependence of ln([M]0/[M]t) on time was observed. The obtained HPEI-b-PHEMA could adsorb hydrophilic molecules. The comparison with the star copolymer with hydrophobic core and hydrophilic PHEMA shell verified that both the hydrophilic core and shell could host the hydrophilic guests, but the amidated HPEI core was more effective than the PHEMA shell.  相似文献   

9.
Cellulose nanocrystals (CNCs) are safe, “green,” hydrophilic nanoparticles. CNCs are added in situ during a semibatch 2‐ethyl hexyl acrylate (EHA)/n‐butyl acrylate (BA)/methyl methacrylate (MMA) emulsion polymerization. As EHA is a more hydrophobic monomer, manipulation of the monomer feed composition allows for the evaluation of the effect of hydrophobicity on CNC distribution in the nanocomposite and ultimately on adhesive properties. The adhesive properties (loop tack, peel strength, and shear strength) of three different EHA/BA/MMA latex formulations are shown to simultaneously improve with increasing CNC loading. However, the hydrophobicity of the EHA leads to a nonuniform distribution of CNCs in the latex films. Comparison of the in situ polymerized nanocomposites to their blended counterparts is also made.  相似文献   

10.
《Comptes Rendus Chimie》2008,11(9):1055-1062
In this work, poly(n-butyl acrylate-b-trifluoroethyl methacrylate) (PBA-b-PTFEMA) and poly(n-butyl acrylate-b-heptadecafluorodecyl methacrylate) (PBA-b-PHFEMA) diblock copolymers synthesized by controlled radical polymerisation are used as a monolayer to protect aluminium against corrosion.Contact angle measurements show hydrophobic behaviour that can be attributed to the presence of a fluorinated block. The preferential orientation of the fluorinated block at the coating/air interface can explain the high hydrophobicity behaviour. Finally, corrosion resistance has been investigated by Electrochemical Impedance Spectroscopy (EIS). The results show that the PBA-b-PHFEMA copolymer provides excellent anti-corrosion barrier properties, even after 60 days of immersion in a solution of 3% NaCl.  相似文献   

11.
Two copolymers, P(PCEMA-co-MMA) and P(t-BMA-block-PCEMA), were prepared via ATRP using 2-(phenoxycarbonyloxy)ethyl methacrylate (PCEMA) as reactive monomer and methyl methacrylate (MMA) or tert-butyl methacrylate (t-BMA) as co-monomers. Alternatively phenoxycarbonyloxy decorated polymethacrylates were obtained via polymer analogous reaction: P(HEMA) was reacted with phenyl chloroformate to yield P(PCEMA). The highly reactive phenoxycarbonyloxy groups were used for polymer analogous reactions with nucleophiles to obtain polymers with ionic/hydrophilic and hydrophobic side groups. Different amines with long alkyl chains or tertiary amine groups were reacted with phenoxycarbonyloxy decorated polymers and subsequently reacted with methyl iodide to obtain amphipathic polymers with bacteriostatic properties.  相似文献   

12.
It was found that the copolymers of sodium acrylate (AA-Na) with styrene (St) and of sodium methacrylate (MAA-Na) with methyl methacrylate (MMA) could polymerize vinyl monomers in an aqueous phase without the usual initiator. Interestingly, there was a definite composition of the copolymer for the polymerization of a given monomer; for example, when poly(St-co-AA-Na) was used, St, MMA, vinyl acetate, ethyl acrylate, methyl acrylate, and acrylonitrile were polymerized by the copolymer having mole ratios of AA-Na:St of 0.61:0.29, 0.47:0.53, 0.38:0.62, 0.30:0.70, 0.24:0.76, and 1.00:0, respectively. The copolymers of various compositions can form hydrophobic areas (HAs) in the water phase. As has been repeatedly reported, the polymerization proceeds in the HAs, and the following new hypothesis was recently proposed that the hard (the less hydrophilic) HA prefers to incorporate the hard monomer and the soft (the less hydrophobic or the more hydrophilic) HA prefers to incorporate the soft monomer. The results mentioned above support this hypothesis.  相似文献   

13.

The synthesis of poly[(methyl methacrylate‐co‐hydroxyethyl methacrylate)‐b‐isobutylene‐b‐(methyl methacrylate‐co‐hydroxyethyl methacrylate)] P(MMA‐co‐HEMA)‐b‐PIB‐b‐P(MMA‐co‐HEMA) triblock copolymers with different HEMA/MMA ratios has been accomplished by the combination of living cationic and anionic polymerizations. P(MMA‐co‐HEMA)‐b‐PIB‐b‐P(MMA‐co‐HEMA) triblock copolymers with different compositions were prepared by a synthetic methodology involving the transformation from living cationic to anionic polymerization. First, 1,1‐diphenylethylene end‐functionalized PIB (DPE‐PIB‐DPE) was prepared by the reaction of living difunctional PIB and 1,4‐bis(1‐phenylethenyl)benzene (PDDPE), followed by the methylation of the resulting diphenyl carbenium ion with dimethylzinc (Zn(CH3)2). The DPE ends were quantitatively metalated with n‐butyllithium in tetrahydrofuran, and the resulting macroanion initiated the polymerization of methacrylates yielding triblock copolymers with high blocking efficiency. Microphase separation of the thus prepared triblock copolymers was evidenced by the two glass transitions at ?64 and +120°C observed by differential scanning calorimetry. These new block copolymers exhibit typical stress‐strain behavior of thermoplastic elastomers. Surface characterization of the samples was accomplished by angle‐resolved X‐ray photoelectron spectroscopy (XPS), which revealed that the surface is richer in PIB compared to the bulk. However, a substantial amount of P(MMA‐co‐HEMA) remains at the surface. The presence of hydroxyl functionality at the surface provides an opportunity for further modification.  相似文献   

14.
Statistical copolymers of 2‐hydroxyethyl methacrylate (HEMA) and 2‐diethylaminoethyl methacrylate (DEA) were synthesized at 50 °C by free‐radical copolymerization in bulk and in a 3 mol L?1 N,N′‐dimethylformamide solution with 2,2′‐azobisisobutyronitrile as an initiator. The solvent effect on the apparent monomer reactivity ratios was attributed to the different aggregation states of HEMA monomer in the different solvents. The copolymers obtained were water‐insoluble at a neutral pH but soluble in an acidic medium when the molar fraction of the DEA content was higher than 0.5. The quaternization of DEA residues increased the hydrophilic character of the copolymers, and they became water‐soluble at a neutral pH when the HEMA content was lower than 0.25. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2427–2434, 2002  相似文献   

15.
Emulsion templating using high internal phase emulsions is an effective route to prepare low density and high porosity macroporous polymers known as polymerized high internal phase emulsions (polyHIPEs). Conventional polyHIPEs, synthesized from surfactant stabilized w/o emulsions have low permeabilities and poor mechanical properties. We present interconnected open macroporous low density nanocomposites produced by polymerizing the continuous phase of emulsion templates, which contained styrene, polyethyleneglycoldimethacrylate, and silylated silica particles. Polyethyleneglycoldimethacrylate and the silylated silica particles acted as crosslinker. The functionalized silica particles were incorporated into the polymer, which resulted in a significant improvement of the mechanical properties of the polyHIPEs without affecting the interconnected and permeable pore structures. The polyHIPEs contained up to 60 wt % silylated silica particles. Young's modulus of the reinforced macroporous polymers increased up to 600% compared with nonreinforced macroporous polymers. The mechanical performance was further increased by increasing the foam density of the macroporous nanocomposites from around 200 to 370 g/cm3 by raising the organic phase volume of the emulsion templates from 20 to 40 vol %. The macroporous polymers synthesized from less concentrated emulsions also possessed interconnected open porous although less permeable structures. The polyHIPE nanocomposites have a permeability of about 200 mD, whereas the polyMIPE nanocomposites still have permeabilities of around 50 mD. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1979–1989, 2010  相似文献   

16.
Preparation and characterization of a novel fluorinated acrylate resin   总被引:1,自引:0,他引:1  
The novel fluorinated acrylate resin was successfully prepared by solution polymerization of 2-(perfluoro-(1,1-bis-isopropyl)-2-propenyl)oxyethyl methacrylate (POMA) with butyl acrylate (BA), methyl methacrylate (MMA) and methacrylic acid (MAA) initiated by AIBN in the co-solvents of ethyl acetate, butyl alcohol and toluene. POMA was synthesized from the intermediate perfluoro nonene and 2-hydroxyethyl methacrylate as the staring reactants. Films of the novel fluorinated acrylate resin were prepared by coating the resin directly on the clean glass sheet and allowed to dry at room temperature. The characteristics of the film such as hydrophobicity, glass transition temperature and thermal stability were characterized with the contact angle, differential scanning calorimetry and thermo-gravimetric analysis respectively. The structure of the novel fluorinated acrylate resin was investigated by Fourier transform infrared (FTIR) spectrometry. The influences of the fluorine content on the performance of the acrylate resin were studied. Results show that the hydrophobicity, chemical resistance, glass transition temperature and thermal stability of the acrylate resin are improved when the fluorinated monomer is introduced to copolymerize with other monomers. However, the hydrophobicity of the fluorinated acrylate resin is improved slightly via annealing.  相似文献   

17.
Although high internal phase emulsion (HIPE)-templating is promising to prepare macroporous materials (polyHIPEs) with controllable shapes and tuneable property, fibrous polyHIPEs with stretchability and their continuous preparation are still challenging. Here, we report the fabrication of polyHIPE fibers in a continuous manner through wet spinning of HIPEs. The successful fabrication of polyHIPE fibers depends on HIPE dispersed phase fractions, ammonia-catalyzed interfacial reaction and wet spinning. Dry polyHIPE fibers exhibit tunable diameters, hierarchically porous structures, high stability to temperature and to various solutions, and high stretchability (with a high tensile strain of 155%), which is hard to achieve for polyHIPEs. The polyHIPE fibers show enhanced uptakes to both water (14.4 ml g−1) and organic solvents (up to 26.3 ml g−1), and the amphiphilic swelling is rare for polyHIPEs. Moreover, the dry polyHIPE fibers show good thermal insulation, similar to that of cotton. Simple wet spinning, combining with HIPEs with tuneable composition, is promising for preparing various polyHIPE fibers for various potential applications.  相似文献   

18.
We report a simple novel procedure to prepare hydrophobic cotton textiles by admicellar polymerization. By in situ introducing fluoropolymer on cotton fibers to generate a dual-size surface roughness, followed by hydrophobization with a little amount of fluoromonomer Octafluoropentamethyl methacrylate (OFPM) with short time, normally hydrophilic cotton has been easily turned into hydrophobic. Hydrophobic cotton textile exhibits a static water contact angle of 124° for a 10?µl droplet. When an octa fluoroalkyl chain is introduced to the cotton surface, the originally smooth surface changed immediately to rough surface which is the key factor for hydrophobicity like lotus leaves.  相似文献   

19.
A new facile method for preparation of an amphiphilic block copolymer via a one‐pot sequential atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) and 2‐hydroxyethyl methacrylate (HEMA) on solid support was developed. As a model homopolymerization for the solid‐supported block copolymerization, ATRPs of MMA and HEMA in toluene and in 2‐butanone/1‐propanol solvent system were carried out, respectively. Crosslinked polystyrene beads bearing 2‐bromoisobutyrate moieties successfully initiated the polymerizations of MMA and HEMA in controlled manner. On the basis of the successful results, the one‐pot synthesis of amphiphilic block copolymer by changing the reaction medium was performed. After the ATRP of MMA in toluene at 90 °C for 1 h, the poly(MMA) formed on the beads were washed by continuous flow of 2‐butanone/1‐propanol under nitrogen with the aid of a glass filter in a U‐shaped glass vessel. Then, 2‐butanone/1‐propanol, copper chloride (I), 2,2′‐bipyridyl, and HEMA were added and heated at 50 °C for 48 h with shaking the vessel, followed by treatment with trifluoroacetic acid to isolate the well‐defined amphiphilic block copolymer, poly(MMA‐b‐HEMA). These demonstrated the feasibility of the present strategy for well‐defined synthesis of amphiphilic block copolymers via a one‐pot procedure. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1990–1997, 2008  相似文献   

20.
Several copolymers of 2-hydroxyethyl methacrylate (HEMA) with methyl acrylate (MA), ethyl acrylate (EA), n-butyl acrylate (BA), and methyl methacrylate (MMA) were prepared at 70°C in nitrogen atmosphere using 0.2% (w/v) benzoyl peroxide as initiator. The copolymer composition was evaluated by estimation of hydroxyl group in the copolymers. Intrinsic viscosity of HEMA–EA, HEMA–BA, and HEMA–MMA copolymers was determined at 35°C in dimethyl formamide. Molecular weight distribution of copolymer samples was evaluated by gel permeation chromatography. Thermal behavior of the copolymers was investigated by dynamic thermogravimetry. Thermal stability decreased on increasing HEMA content in MA, EA, and BA copolymers. However, a reverse trend was observed in HEMA–MMA copolymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号