首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sulfur doped ZnO/TiO2 nanocomposite photocatalysts were synthesized by a facile sol‐gel method. The structure and properties of catalysts were characterized by X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), UV‐vis diffusive reflectance spectroscopy (DRS) and N2 desorption‐adsorption isotherm. The XRD study showed that TiO2 was anatase phase and there was no obvious difference in crystal composition of various S‐ZnO/TiO2. The XPS study showed that the Zn element exists as ZnO and S atoms form SO2?4. The prepared samples had mesoporosity revealed by N2 desorption‐adsorption isotherm result. The degradation of Rhodamine B dye under visible light irradiation was chosen as probe reaction to evaluate the photocatalytic activity of the ZnO/TiO2 nanocomposite. The commercial TiO2 photocatalyst (Degussa P25) was taken as standard photocatalyst to contrast the prepared different photocatalyst in current work. The improvement of the photocatalytic activity of S‐ZnO/TiO2 composite photocatalyst can be attributed to the suitable energetic positions between ZnO and TiO2, the acidity site caused by sulfur doping and the enlargement of the specific area. S‐3.0ZnO/TiO2 exhibited the highest photocatalytic activity under visible light irradiation after Zn amount was optimized, which was 2.6 times higher than P25.  相似文献   

2.
Atomic‐layer deposition (ALD) is a thin‐film growth technology that allows for conformal growth of thin films with atomic‐level control over their thickness. Although ALD is successful in the semiconductor manufacturing industry, its feasibility for nanoparticle coating has been less explored. Herein, the ALD coating of TiO2 layers on ZnO nanoparticles by employing a specialized rotary reactor is demonstrated. The photocatalytic activity and photostability of ZnO nanoparticles coated with TiO2 layers by ALD and chemical methods were examined by the photodegradation of Rhodamine B dye under UV irradiation. Even though the photocatalytic activity of the presynthesized ZnO nanoparticles is higher than that of commercial P25 TiO2 nanoparticles, their activity tends to decline due to severe photocorrosion. The chemically synthesized TiO2 coating layer on ZnO resulted in severely declined photoactivity despite the improved photostability. However, ultrathin and conformal ALD TiO2 coatings (≈0.75–1.5 nm) on ZnO improved its photostability without degradation of photocatalytic activity. Surprisingly, the photostability is comparable to that of pure TiO2, and the photocatalytic activity to that of pure ZnO.  相似文献   

3.
The main goal of the presented work was to investigate the effect of ZnO or/and TiO2 on the stability of bifonazole in solutions under UVA irradiation. To this end, a simple and reproducible UPLC method for the determination of bifonazole in the presence of its photocatalytic degradation products was developed. Linearity was studied in the range of 0.0046–0.15 mg mL−1 with a determination coefficient of 0.9996. Bifonazole underwent a photocatalytic degradation process under the experimental conditions used. Comparative studies showed that combination of TiO2/ZnO (1:1 w /w) was a more effective catalyst than TiO2 or ZnO with a degradation rate of up to 67.57% after 24 h of irradiation. Further, kinetic analyses indicated that the photocatalytic degradation of bifonazole in the mixture of TiO2/ZnO can be described by a pseudo‐first order reaction. Statistical comparison clearly indicated that the presence of TiO2/ZnO also affected the stability of bifonazole from a cream preparation after 15 h of UVA exposure (p < 0.05). Ten photodegradation products of bifonazole were identified for the first time and their plausible fragmentation pathways, derived from MS/MS data, were proposed. The main pathway in the photocatalytic transformation of bifonazole in the presence of ZnO or/and TiO2 involves hydroxylation of the methanetriyl group and/or adjacent phenyl rings and cleavage of the imidazole moiety.  相似文献   

4.
The nano-sized particles of TiO2 were prepared by thermal decomposition of titanium (IV) tetrabutanoxide complex with stearic acid at 450℃ in the air.It was observed that the amount of stearic acid,used initially for the complex synthesis in 2-propanol at 25℃,had great influence on the physical properties of the prepared TiO2 including crystal structure, the particle size,surface area and the adsorption capacity for organic substrate of a textile dye X3B in eater,and thereafter the photocatalytic activity for the dye oxidation.Some samples displayed lower adsorption capacity for the organic substrate in water than a TiO2 of Degussa p25,but higher photocatalytic activity for the organic oxidation.Possible reason for the observed difference was discussed in the text.  相似文献   

5.

Composite hydrogels based on polyacrylamide immobilized nanoparticles of commercial (P25 brand) titanium dioxide and of titanium dioxide nanoparticles prepared by electric explosion of a wire were synthesized. The enthalpy of interaction at the polyacrylamide/TiO2 interface was determined by microcalorimetry using the thermochemical cycle method. Interaction of polyacrylamide polymer chains with the surface of TiO2 nanoparticles is energetically unfavorable. The absence of interactions between the hydrogel polymer network and surface of TiO2 nanoparticles favors manifestation of the UV-induced photocatalytic activity of TiO2 nanoparticles immobilized in the hydrogel. Immobilization in the polyacrylamide hydrogel matrix decreases the photocatalytic activity of P25 brand TiO2 nanoparticles, but does not affect the photocatalytic activity of titanium dioxide nanoparticles prepared by the electric explosion method. The photocatalytic activity of TiO2 nanoparticles immobilized in the bulk of polyacrylamide hydrogel evaluated by the decomposition of Methyl Orange dye is controlled by the diffusion rate of the dye molecules into the bulk of the hydrogel and depends also on the aggregation of TiO2 nanoparticles in the hydrogel matrix.

  相似文献   

6.
A series of dye-modified TiO2 photocatalysts were synthesized using dye Chrysoidine G (CG), tolylene-2,4-diisocyanate (TDI), and commercial TiO2 (Degussa P25) as starting materials. TDI was used as a bridging molecule whose two -NCO groups reacted with Ti-OH of TiO2 and -NH2 groups of CG, respectively. As a result, special organic complexes were formed on the TiO2 surface via stable π-conjugated chemical bonds between TiO2 and dye molecules, confirmed by FT-IR, XPS, and UV-vis spectra. Due to the existence of π-conjugated surface organic complexes, the as-synthesized photocatalysts showed a great improvement in visible absorption (400-550 nm). Methylene blue, as a photodegradation target, was used to evaluate the photocatalytic performance, and the dye-modified TiO2 exhibited much better activity under the visible light irradiation than bare TiO2.  相似文献   

7.
Heterogeneous photocatalytic removal of Rhodamine-B (RhB) dye from liquid phase was done using mixed-phase nanocrystalline TiO2 for enhancement of charge separation and UV-visible-light-driven photocatalysis capabilities. The mixed-phase nanocrystalline TiO2 was characterized using various analytical techniques including XRD, TEM, UV-vis DRS and PL to investigate its phase composition and structure, nanocrystalline size distribution, band gap energy, and photoluminescence properties. The photocatalytic discoloration efficiency of mixed-phase nanocrystalline titania was explored by monitoring the decomposition of RhB dye in an aqueous solution. The results showed that the as-prepared mixed-phase nanocrystalline TiO2 was excellent for degradation of RhB molecule, and the combination of crystal phase of anatase and rutile has great effect on decomposition of RhB. The kinetic studies demonstrate that the photocatalytic oxidation reaction followed a pseudo-first-order expression due to the evidence of linear correlation between ln(c/c 0) vs. reaction time t. Moreover, the aqueous RhB dye decomposition over the as-prepared mixed-phase nanocrystalline TiO2 catalyst is controlled by RhB pre-adsorption.  相似文献   

8.
A novel method to fabricate composition- and topology-controlled ZnO/TiO2 inverse opals (IO) films using a positive sacrificial ZnO IO template has been developed. This method includes a two-step process, preparation of ZnO IO by a simple electrochemical deposition using a self-assembly polystyrene colloidal crystal template and preparation of ZnO/TiO2 IO by a liquid phase deposition (LPD) process at room temperature. The composition and topology of ZnO/TiO2 IO can be easily controlled by changing the duration of the LPD. After 20 min LPD process, a ZnO/TiO2 composite IO with non-close-packed face-centered cubic air sphere array was obtained. Prolonging the duration to 60 min, a pure TiO2 IO (TIO-LPD60) with obviously thickened walls was formed. The formation mechanism for the compositional and topological variation was discussed. A preliminary study on UV photocatalytic property of the samples for degradation of methylene blue reveals that the composition and topology significantly influenced the photocatalytic activity of the IO film. The ZnO/TiO2 composite IO demonstrates a higher degree of activity than both pure ZnO and pure TiO2 IO, although they have a similar IO wall thickness. Moreover, with increasing IO wall thickness from ~52 nm to ~90 nm, TIO-LPD60 exhibits the highest level of photocatalytic performance.  相似文献   

9.
Visible‐light‐driven plasmonic photocatalyst Ag‐TiO2 nanocomposite hollow spheres are prepared by a template‐free chemically‐induced self‐transformation strategy under microwave‐hydrothermal conditions, followed by a photochemical reduction process under xenon lamp irradiation. The prepared samples are characterized by using scanning electron microscopy, transmission electron microscopy, X‐ray diffraction, N2 adsorption‐desorption isotherms, X‐ray photoelectron spectroscopy, UV/Vis and Raman spectroscopy. Production of ?OH radicals on the surface of visible‐light illuminated TiO2 was detected by using a photoluminescence method with terephthalic acid as the probe molecule. The photocatalytic activity of as‐prepared samples was evaluated by photocatalytic decolorization of Rhodamine B (RhB) aqueous solution at ambient temperature under visible‐light irradiation. The results show that the surface plasmon absorption band of the silver nanoparticles supported on the TiO2 hollow spheres was red shifted, and a strong surface enhanced Raman scattering effect for the Ag‐TiO2 nanocomposite sample was observed. The prepared nanocomposite hollow spheres exhibits a highly visible‐light photocatalytic activity for photocatalytic degradation of RhB in water, and their photocatalytic activity is higher than that of pure TiO2 and commercial Degussa P25 (P25) powders. Especially, the as‐prepared Ag‐TiO2 nanocomposite hollow spheres at the nominal atomic ratio of silver to titanium ( R ) of 2 showed the highest photocatalytic activity, which exceeds that of P25 by a factor of more than 2.  相似文献   

10.
Three TiO2 loaded composites, TiO2/kaolin, TiO2/diatomite, and TiO2/zeolite, were prepared in order to improve the solar-light photocatalytic activity of TiO2. The results showed that the photocatalytic activity could obviously be enhanced by loading appropriate amount of inorganic mineral materials. Meanwhile, TiO2 content, heat-treatment temperature and heat-treatment time on the photocatalytic activity were reviewed. Otherwise, the effect of solar light irradiation time and dye concentration on the photocatalytic degradation of Acid Red B was investigated. Furthermore, the degradation mechanism and adsorption process were also discussed.  相似文献   

11.
In this study, Ag deposited TiO2 (Ag/TiO2) composites were prepared by three different methods (Ultraviolet Irradiation Deposition (UID), Vitamin C Reduction (VCR) and Sodium Borohydride Reduction (SBR)) for the visible-light photocatalytic degradation of organic dyes in magnetic field. And then the prepared Ag deposited TiO2 (Ag/TiO2) composites were characterized physically by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The visible-light photocatalytic activities of these three kinds of Ag deposited TiO2 (Ag/TiO2) composites were examined and compared through the degradation of several organic dyes under visible-light irradiation in magnetic field. In addition, some influence factors such as visible-light irradiation time, organic dye concentration, revolution speed, magnetic field intensity and organic dye kind on the visible-light photocatalytic activity of Ag deposited TiO2 (Ag/TiO2) composite were reviewed. The research results showed that the presence of magnetic field significantly enhanced the visible-light photocatalytic activity of Ag deposited TiO2 (Ag/TiO2) composites and then contributed to the degradation of organic dyes.  相似文献   

12.
An heterogeneous conducting polymer composite, poly(3-hexylthiophene)/TiO2 (P3HT/TiO2), was synthesized. The photocatalytic activity of P3HT alone and the composite was investigated for the first time by degrading a common dye under UV exposure. It was shown that the photocatalytic activity of the nanocomposites was higher compared to either the polymer or TiO2 alone. A simple mechanism was proposed to explain this observed synergetic effect.  相似文献   

13.
The functionalization of photocatalytic metal oxide nanoparticles of TiO2, ZnO, WO3 and CuO with amine-terminated (oleylamine) and thiol-terminated (dodecane-1-thiol) alkyl-chain ligands was studied under ambient conditions. A high selectivity was observed in the binding specificity of a ligand towards nanoparticles of these different oxides. It was observed that oleylamine binds stably to only TiO2 and WO3, whereas dodecane-1-thiol binds stably only to ZnO and CuO. Similarly, polar-to-nonpolar solvent phase transfer of TiO2 and WO3 nanoparticles could be achieved by using oleylamine, but not dodecane-1-thiol, whereas the opposite holds for ZnO and CuO. The surface chemistry of ligand-functionalized nanoparticles was probed by attenuated total reflectance (ATR)-FTIR spectroscopy, which enabled the occupation of the ligands at the active sites to be elucidated. The photostability of the ligands on the nanoparticle surface was determined by the photocatalytic self-cleaning properties of the material. Although TiO2 and WO3 degrade the ligands within 24 h under both UV and visible light, ligands on ZnO and CuO remain unaffected. The gathered insights are also highly relevant from an application point of view. As an example, because the ligand-functionalized nanoparticles are hydrophobic in nature, they can be self-assembled at the air-water interface to give nanoparticle films with demonstrated photocatalytic as well as anti-fogging properties.  相似文献   

14.
Controlled polydopamine (PDA)-coated TiO2 composite nanofibers (NFs) were successfully fabricated via a facile electrospinning process and exposing TiO2 NFs into a slightly alkaline dopamine solution. Chemical composition, structural morphology, and photocatalytic degradation property of as-prepared TiO2 NFs and PDA-coated TiO2 composite NFs were characterized by Fourier transfer infrared, X-ray photoelectron spectra, transmission electron microscopy, UV-vis diffuse reflectance spectra, and photocatalytic degradation experiments. The results indicated that the core-shell TiO2@PDA composite NFs were successfully prepared and the thickness of PDA shell was highly controlled within several nanometers. And obtained TiO2@PDA composite NFs exhibited improved photocatalytic performance after PDA coating, which is attributed to the photosensitization of PDA shell. Moreover, with increased pH values of initial solution, both absorption capacity in the dark and photocatalytic performance of TiO2@PDA composite NFs showed significant improvement. Additionally, the obtained composite NFs showed different degrees of enhancement in photocatalytic performance based on different dyes, which is related to the “bait” effect of PDA shell. Comparing with anionic dyes, TiO2@PDA composite NFs tended to adsorb and degrade more cationic dye molecules. It is anticipated that the fabricated composite NFs with controlled core-shell structure have great potential to be applied for organic pollutants removal, especially cationic dyes.  相似文献   

15.
Photocatalytic degradation of the reactive triazine dyes Reactive Yellow 84 (RY 84), Reactive Red 120 (RR 120), and Reactive Blue 160 (RB 160) on anatase phase N-doped TiO2 in the presence of natural sunlight has been carried out in this work. The effect of experimental parameters like initial pH and concentration of dye solution and dosage of the catalyst on photocatalytic degradation have also been investigated. Adsorption of dyes on N-doped TiO2 was studied prior to photocatalytic studies. The studies show that the adsorption of dyes on N-doped TiO2 was high at pH 3 and follows the Langmuir adsorption isotherm. The Langmuir monolayer adsorption capacity of dyes on N-doped TiO2 was 39.5, 86.0, and 96.3 mg g?1 for RY 84, RR 120, and RB 160, respectively. The photocatalytic degradation of the dyes follows pseudo first-order kinetics and the rate constant values are higher for N-doped TiO2 when compared with that of undoped TiO2. Moreover, the degradation of RY 84 on N-doped TiO2 in sunlight was faster than the commercial Aeroxide® P25. However, the P25 has shown higher photocatalytic activity for the other two dyes, RR 120 and RB 160. The COD of 50 mg l?1 Reactive Yellow-84, RR 120 and RB 160 was reduced by 65.1, 73.1, and 69.6 %, respectively, upon irradiation of sunlight for 3 h in the presence of N-doped TiO2. The photocatalyst shows low activity for the degradation of RY 84 dye, when its concentration was above 50 mg l?1, due to the strong absorption of photons in the wavelength range 200–400 nm by the dye solution. LC–MS analysis shows the presence of some triazine compounds and formimidamide derivatives in the dye solutions after 3 h solar light irradiation in the presence of N-doped TiO2.  相似文献   

16.
《Comptes Rendus Chimie》2017,20(7):710-716
The photocatalytic degradation of an antibiotic (spiramycin) has been studied using immobilized titanium dioxide (TiO2) as a photocatalyst in a laboratory reactor under ultraviolet illumination (365 nm). The degradation of the antibiotic was monitored by ultraviolet spectrophotometry and high-pressure liquid chromatography and confirmed by an antibacterial activity evaluation. Two types of TiO2 (P25 and PC500) immobilized on glass plates were compared. For TiO2 PC500 immobilization on glass and paper was also studied. A slightly better degradation was obtained with TiO2 P25 for which the degradation kinetics were investigated. The Langmuir–Hinshelwood kinetic model is satisfactorily obeyed at initial time and in the course of the reaction. Adsorption and apparent rate constants were determined. These results show a complete degradation of spiramycin, which was confirmed by the inhibition of the antibacterial activity of Staphylococcus xylosus, when exposed to spiramycin solutions treated with photocatalyst for a short time. In addition, the codegradation of spiramycin and tylosin was investigated and showed that tylosin had a higher affinity to the catalyst TiO2 P25 than spiramycin. The complete degradation of spiramycin confirms the feasibility of such a photocatalytic treatment process for spiramycin elimination from contaminated water.  相似文献   

17.
The TiO2-doped ZnO microtubes have been successfully fabricated via a wet chemicalmethod, using zinc chloride and titanium sulphate as the starting materials. The as-synthesized products were characterized by X-ray diffraction, field emission scanning electronmicroscopy and room temperature photoluminescence measurement. The photocatalytic ac-tivity in degrading methyl orange was measured with a UV-Vis spectrophotometer. The pure ZnO microtubes exhibit an exact hexangular hollow structure with a diameter of about 700 nm, a length of 3 μm and a wall thickness of about 40 nm. The TiO2-doped ZnO microtubes with TiO2/ZnO ratio less than 5% have the same dimension with the pure ZnO microtubes, a smooth column shape, not a hexangular structure. The growth of ZnO may be inhibited by the more Ti4+ doped into ZnO structure to achieve a small dimension or a multiphase. The crystallinity of ZnO microtubes decreases with increasing TiO2 content, and then a multiphase containing ZnO, Ti3O5 and TiO occur when the TiO2/ZnO ratio is more than 5%. The UV emission intensity of the TiO2-doped ZnO obviously increases and then tends to decrease with TiO2/ZnO ratio increasing. The photocatalytic properties of the TiO2-doped ZnO microtubes are very effcient in degrading organic dyes of methyl orange and are well identical with its PL properties and the crystallinity.  相似文献   

18.
Heterogeneous photocatalytic removal of Rhodamine-B (RhB) dye from liquid phase was done using anatase-phase nanocrystalline TiO2 synthesized via a modified sol-gel process. The anatase-phase nanocrystalline TiO2 was characterized using various analytical techniques including XRD, UV-vis DRS, PL, and FTIR to investigate its phase composition and structure, nanocrystalline size, band gap energy, photoluminescence and surface properties of the prepared systems. The photocatalytic discoloration efficiency of anatase-phase nanocrystalline titania was investigated by monitoring the decomposition of RhB dye as target compounds in an aqueous solution. The results showed that the as-prepared anatase-phase nanocrystalline TiO2 was excellent for degradation of RhB molecule, and the crystallite size, excitonic PL and surface hydroxyl content have intimate relationship with the decomposition efficiency of RhB. The reaction mechanism was proposed and the results demonstrate that the role of direct photolysis on RhB dye degradation can be neglected. Meanwhile, the Langmuir-Hinshelwood kinetic model describes the photodecay date of RhB in consistent with a first order powder law and thus photocatalytic oxidation reaction followed a pseudo-first-order kinetics.  相似文献   

19.
有机改性TiO2光催化剂的制备及可见光催化性能   总被引:1,自引:0,他引:1  
姜东  徐耀  侯博  吴东  孙予罕 《化学学报》2007,65(14):1289-1293
以染料黄叱精(Chrysoidine G)和TiO2 (Degussa P25)为原料, 利用甲苯二异氰酸酯为桥连体, 成功合成了一种有机改性的TiO2光催化剂. 采用XRD, TEM, FT-IR, UV-Vis对所得催化剂进行了表征, 以亚甲基蓝降解为探针反应, 考察其可见光催化性能. 结果表明: 甲苯二异氰酸酯在黄叱精和TiO2之间形成了稳定的化学键, 从而实现了对TiO2的表面有机改性; 改性后的TiO2在可见光区(400~550 nm)有明显的吸收; 与未改性TiO2相比, 有机改性的TiO2催化剂在可见光照射下表现出了很好的光催化性能.  相似文献   

20.
Semiconductor photocatalysis often leads to partial or complete mineralization of organic pollutants. In this study, photocatalytic degradation of Safranin-T, a hazardous textile dye, has been investigated using various semiconductors such as titanium dioxide (TiO2), zinc oxide (ZnO), bismuth oxide (Bi2O3), cerium oxide (CeO2), yttrium oxide (Y2O3), and zirconium oxide (ZrO2). The experiments were carried out by irradiating the aqueous solution of Safranin-T containing photocatalysts with UV and air. Maximum decolorization of Safranin-T occurred with TiO2 (99.8%), followed by ZnO (80.3%), Bi2O3 (57.1%), CeO2 (13.1%), Y2O3 (12.2%), and ZrO2 (10.2%). The rate of photocatalytic degradation varied with increasing concentration of Safranin-T. The equilibrium degradation data of Safranin-T by TiO2 and ZnO were fitted to the Langmuir and Freundlich isotherm models. The Freundlich and Langmuir model showed satisfactory fit to the equilibrium degradation data for TiO2 and ZnO, respectively. Photocatalytic degradation of Safranin-T followed pseudo second-order kinetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号