首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 571 毫秒
1.
A new flame retardant system with organic modified boron nitride (m‐BN) and intumescent flame retardant (IFR) was used in this paper, and the synergistic flame retardancy of m‐BN and IFR on natural rubber (NR) was studied. NR/IFR/m‐BN composites were characterized by X‐ray photoelectron spectroscopy(XPS), Fourier transform infrared spectrometry (FTIR), thermogravimetric analysis, UL‐94, limiting oxygen index (LOI), tensile testing, cone calorimeter testing, and thermal conductivity testing. When 4 wt% m‐BN was added, the flame retardancy and mechanical properties of the composites were improved. The LOI value of NR/IFR/4 phr m‐BN reached 26.8%, and suppressed fire spread in a UL‐94 test. Compared with pure NR, the peak heat release rate (pHRR) was reduced by 52.2%, the total heat release (THR) was reduced by 27.6%, and CO yields were reduced by 51.4%. As a key aspect of fire safety, the ignition time is effectively delayed to 23 seconds due to the increased thermal conductivity of NR/IFR/m‐BN. Since the synergistic effect of m‐BN effectively improves the flame retardancy of NR, it provides a feasible method for improving the fire safety of polymers.  相似文献   

2.
The charring agent (CNCA‐DA) containing triazine and benzene rings was combined with ammonium polyphosphate (APP) to form intumescent flame retardant (IFR), and it was occupied to modify polylactide (PLA). The flame retardant properties and mechanism of flame retardant PLA composites were investigated by the limited oxygen index (LOI), vertical burning test (UL‐94), thermogravimetric analysis, microscale combustion calorimetry, scanning electron microscopy, laser Raman spectroscopy analysis and X‐ray photoelectron spectroscopy. The analysis from LOI and UL‐94 presented that the IFR was very effective in flame retardancy of PLA. When the weight ratio of APP to CNCA‐DA was 3:1, and the IFR loading was 30%, the IFR showed the best effect, and the LOI value reached 45.6%. It was found that when 20 wt% IFR was loaded, the flame retardancy of PLA/IFR still passed UL‐94 V‐0 rating, and its LOI value reached 32.8%. The microscale combustion calorimetry results showed that PLA/IFR had lower heat release rate, total heat release, and heat release capacity than other composites, and there was an obvious synergistic effect between APP and CNCA‐DA for PLA. IFR containing APP/CNCA‐DA had good thermal stability and char‐forming ability with the char residue 29.3% at 800°C under N2 atmosphere. Scanning electron microscopy observation further indicated that IFR could promote forming continuous and compact intumescent char layer. The laser Raman spectroscopy analysis and X‐ray photoelectron spectroscopy analysis results indicated that an appropriate graphitization degree of the residue char was formed, and more O and N were remained to form more cross‐linking structure. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
Nanoflaky manganese phosphate (NMP) was synthesized from manganese nitrate and trisodium phosphate dodecahydrate, and used as a synergistic agent on the flame retardancy of polypropylene (PP)/intumescent flame retardant (IFR) system. The thermogravimetric analysis (TGA), real time Fourier-transform infrared (RTFTIR) spectroscopy measurements, cone calorimeter (CONE) and microscale combustion calorimeter (MCC) were used to evaluate the synergistic effects of NMP on PP/IFR system. When IFR + NMP was fixed at 20 wt% in flame retardant PP system, the TGA tests showed that NMP could enhance the thermal stability of PP/IFR system at initial temperature from about room temperature to 440 °C and effectively increase the char residue formation. The RTFTIR results revealed that NMP could clearly change the decomposition behavior of PP in PP/IFR system, which promotes decomposition at the initial temperature from about room temperature to 260 °C and forms more effective barrier layer to protect PP from decomposing at high temperature from about 260 °C to 500 °C. The CONE tests indicated that the addition of NMP in PP/IFR system not only reduced the peak heat release rate (HRR), but also prolonged the ignition time. The MCC results revealed that PP/IFR/NMP system generated less combustion heat over the course of heating than that of PP/IFR system. And scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) were used to explore the char residues of the PP/IFR systems with and without NMP.  相似文献   

4.
A type of trialkoxysilane‐containing naphtholoxazine compound (Naph‐boz) was successfully synthesized and combined with ammonium polyphosphate/melamine (APP/ME) as an intumescent flame retardant (IFR) to improve the flame‐retardant efficiency of polyoxymethylene (POM). The Underwriters Laboratories 94 (UL94) vertical burning test, limiting oxygen index (LOI), cone calorimeter, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and Raman spectral analysis were used to study the flame‐retardant properties and related mechanism. The results showed that the formulation with 20 wt.% of APP, 6 wt.% of ME, and 4 wt.% of Naph‐boz passed UL94 V‐1 rating, and the LOI value was improved to 40.3%. Compared with pure POM, the IFR with Naph‐boz had greater reduction in peak heat release rate (lower 74.9%) and total heat release (lower 40.2%). SEM images showed that compact and reinforcing charred layer was formed during the POM/IFR/4Naph‐boz samples combustion, which was beneficial at reducing and maintaining low combustion parameters throughout the cone calorimeter test. The synergistic flame‐retardant effect between Naph‐boz and APP/ME was considered as the reason for the improvement in flame retardancy POM. Furthermore, because of the Naph‐boz was conducive to the compatibility between the flame retardants and matrix, the notched Izod impact strength of POM/IFR/4Naph‐boz composite was higher than that of POM/IFR system.  相似文献   

5.
In this work, a new type of leaf‐shaped cobalt‐zeolitic imidazolate framework–modified graphene (Co‐ZIF‐L@RGO) hybrid was successfully prepared and blended with an intumescent flame retardant (IFR). It was added into thermoplastic polyurethane (TPU) to study the effect of its combination with IFR on the thermal conductivity and flame retardant performance of TPU. The morphology and structure of the Co‐ZIF‐L@RGO hybrid were characterized by scanning electron microscope (SEM), Fourier transform infrared and X‐ray diffraction (XRD). The results showed that Co‐ZIF‐L were uniformly loaded on the surface of graphene. Furthermore, compared with pure TPU, the limiting oxygen index values of the composite material with 3 wt% Co‐ZIF‐L and 27 wt% IFR increased to 32.6%. Their UL‐94 rating reached V‐0 rating. Their peak heat release rate, total heat release, peak smoke production rate and total smoke production were also greatly reduced by 84.4%, 70.1%, 60.3% and 62.5%, respectively. The thermogravimetric‐infrared test results showed that the amount of toxic gas emissions was effectively suppressed. The residual carbon was analyzed by SEM, laser Raman spectroscopy and XRD, and flame retardant mechanism was further investigated. Besides, the addition of this hybrid improved the thermal conductivity of TPU.  相似文献   

6.
Intumescent flame retardant (IFR) has received the considerable attention ascribed to the inherent advantages including non‐halogen, low toxicity, low smoke release and environmentally friendly. In this work, a novel charring agent poly (piperazine phenylaminophosphamide) named as PPTA was successfully synthesized and characterized by Fourier transform infrared spectra (FTIR) and X‐ray photoelectron spectroscopy (XPS). Then, a series of flame‐retardant EP samples were prepared by blending with ammonium polyphosphate (APP) and PPTA. Combustion tests include oxygen Index (LOI), vertical Burning Test (UL‐94) and cone calorimeter testing,these test results showed that PPTA greatly enhances the flame retardancy of EP/APP. According to detailed results, EP containing 10 wt% APP had a LOI value of 30.2%,but had no enhancement on UL‐94 rating. However, after both 7.5 wt% APP and 2.5 wt% PPTA were added, EP‐7 passed UL‐94 V‐0 rating with a LOI value of 33.0%. Moreover, the peak heat release rate (PHRR) and peak of smoke product rate (PSPR) of EP‐7 were greatly decreased. Meanwhile, the flame‐retardant mechanism of EP‐7 was investigated by scanning electron microscopy (SEM), thermogravimetric analysis/infrared spectrometry (TG‐IR) and X‐ray photoelectron spectroscopy (XPS). The corresponding results presented PPTA significantly increased the density of char layer, resulting in the good flame retardancy.  相似文献   

7.
Kaolin clay was introduced into an intumescent flame retardant (IFR) system containing ammonium polyphosphate as an acid source and pentaerythritol as a carbonization agent in order to improve the thermal stability and flame retardancy of polypropylene (PP) composite. The flame retardancy and smoke suppression was evaluated by the limiting oxygen index, vertical burning UL‐94, and cone calorimeter (CONE) tests. The limiting oxygen index value was increased from 30 to 33 at the presence of 2 phr kaolin. The peak heat release rate value decreased from 1002 kW/m2 of neat PP to 318 kW/m2 of PP/40 phr IFR and then to 222 kW/m2 of PP/38 phr IFR/2 phr kaolin. The time of the peak heat release rate was significantly prolonged after the introduction of kaolin. The morphology of char after combustion was characterized by a scanning electron microscope, and it revealed more compact char structure that was obtained at the presence of kaolin. The mechanism of kaolin on improving the retardancy and smoke suppression of PP/IFR composite was proposed on the basis of X‐ray photoelectron spectroscopy analysis. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
李斌 《高分子科学》2015,33(2):318-328
The effects of aluminum hypophosphite(AHP) as a synergistic agent on the flame retardancy and thermal degradation behavior of intumescent flame retardant polypropylene composites(PP/IFR) containing ammonium polyphosphate(APP) and triazine charring-foaming agent(CFA) were investigated by limiting oxygen index(LOI), UL-94 measurement, thermogravimetric analysis(TGA), cone calorimeter test(CONE), scanning electron microscopy(SEM) and X-ray photoelectron spectroscopy(XPS). It was found that the combination of IFR with AHP exhibited an evident synergistic effect and enhanced the flame retardant efficiency for PP matrix. The specimens with the thickness of 0.8 mm can pass UL-94 V-0 rating and the LOI value reaches 33.5% based on the total loading of flame retardant of 24 wt%, and the optimum mass fraction of AHP/IFR is 1:6. The TGA data revealed that AHP could change the degradation behavior of IFR and PP/IFR system, enhance the thermal stability of the IFR and PP/IFR systems at high temperatures and promote the char residue formation. The CONE results revealed that IFR/AHP blends can efficiently reduce the combustion parameters of PP, such as heat release rate(HRR), total heat release(THR), smoke production rate(SPR) and so on. The morphological structures of char residue demonstrated that AHP is of benefit to the formation of a more compact and homogeneous char layer on the materials surface during burning. The analysis of XPS indicates that AHP may promote the formation of sufficient char on the materials surface and improve the flame retardant properties.  相似文献   

9.
The flame retardancy of a novel intumescent flame‐retardant polypropylene (IFR‐PP) system, which was composed of a charring agent (CA), ammonium polyphosphate (APP), and polypropylene (PP), could be enhanced significantly by adding a small amount (1.0 wt%) of an organic montmorillonite (O‐MMT). The synergistic flame‐retardant effect was studied systematically. The thermal stability and combustion behavior of the flame‐retarded PP were also investigated by thermogravimetric analysis (TGA), limiting oxygen index (LOI), vertical burning test (UL‐94), scanning electronic microscopy (SEM), and cone calorimeter test (CCT). TGA results demonstrated that the onset decomposition temperatures of IFR‐PP samples, with or without O‐MMT, were higher than that of neat PP. Compared with IFR‐PP, the LOI value of IFR‐PP containing 1.0 wt% O‐MMT was increased from 30.8 to 33.0, and the UL‐94 rating was also enhanced to V‐0 from V‐1 when the total loading of flame retardant was the same. The cone calorimeter results showed that the IFR‐PP with 1.0 wt% of O‐MMT had the lowest heat release rate (HRR), total heat release (THR), total smoke production (TSP), CO production (COP), CO2 production (CO2P), and mass loss (ML) of all the studied IFR‐PP samples, with or without O‐MMT. All these results indicated that O‐MMT had a significantly synergistic effect on the flame‐retardancy of IFR‐PP at a low content of O‐MMT. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Low flame retardant efficiency is a key bottleneck for currently available retardants against the flammable polypropylene (PP). Herein, the organically modified montmorillonite (OMMT) was utilized as a synergist for our previously reported intumescent flame retardant (IFR) that was constructed from ammonium polyphosphate (APP) and hyperbranched charring foaming agent (HCFA) to further enhance the retardant efficiency against PP. The resultant's combustion behavior was thoroughly investigated by cone calorimetry, limiting oxygen index (LOI), vertical burning test (UL‐94), and scanning electron microscopy (SEM). The results showed that 20% addition of IFR with OMMT showed a positive effect and improved the flame retardancy of the PP systems. Especially, addition of 2 wt% OMMT obviously increased the LOI values of PP systems with 20% total loading flame retardants from 29% to 31.5% and the samples meet V‐0 rating as well as the reduction of the heat release rate (HRR), total heat release (THR), CO2, and CO production occurred. On the other hand, the SEM images were also revealed that OMMT initiated a dense and strong char on the surface of the material, which resulted in efficient flame retardancy of PP matrix during combustion. In addition, thermal degradation behavior discussed by thermogravimetric analysis (TGA) indicated that OMMT could improve the thermal stability of PP systems under high temperature, and promoted char residues of PP/IFR systems. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
The ferrocene‐based polymer (PDPFDE) accompanied with traditional intumescent flame retardant (IFR) system (ammonium polyphosphate (APP)/pentaerythritol (PER) = 3/1, mass ratio) has been used as additive flame retardant in polypropylene (PP), aiming to lower the total loading amount. The thermal stability and fire retardant properties were investigated by thermogravimetric analysis (TGA), limiting oxygen index (LOI), vertical combustion (UL‐94), and cone calorimetry (CONE). The fire retardant mechanism was studied by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and Raman spectroscopy. The results showed that the PP1 with 25 wt% IFR only passed the UL‐94 V‐1 rating, but the PP6 loaded by 0.5 wt% PDPFDE and 22.5 wt% IFR possessed an LOI value of 28.5% and passed the UL‐94 V‐0 rating; the peak heat release rate (pHRR) and total heat release (THR) are decreased by 63% and 43%, respectively, compared with pure PP. In addition, the char residue of PP6 manifested a very compact and smooth surface, indicating a more effective barrier layer. Meanwhile, it was interesting that the addition of PDPFDE evidently improved the impact strength and elongation at break of PP/IFR composites.  相似文献   

12.
The synergistic effect of four different boron containing substances, zinc borate (ZnB), borophosphate (BPO4), boron silicon containing preceramic oligomer (BSi) and lanthanum borate (LaB), were studied to improve the flame retardancy of a polypropylene (PP) intumescent system composed of ammonium polyphosphate (APP) and pentaerythritol (PER). The flame retardancy of PP composites was investigated by limiting oxygen index (LOI), UL-94 standard, thermogravimetric analysis (TGA) and cone calorimeter tests. The addition of 20 wt% intumescent flame retardant (IFR) improves the flame retardancy by increasing the char formation. According to LOI and UL-94 test, boron compounds show their highest synergistic effect at 1 wt% loading. BPO4 containing composite shows the highest LOI (30), lowest maximum heat release rate (HRR) and lowest total heat release rate (THR) value. Although the char yield increases as the amount of boron compounds increases, the flame retarding effect decreases. Cone calorimeter and TGA data indicate that the boron compounds are likely to show their synergistic effect by reinforcing the integrity of char which improves its barrier effect rather than increasing the char yield.  相似文献   

13.
Brominated flame retardant polystyrene composites were prepared by melt blending polystyrene, decabromodiphenyl oxide, antimony oxide, multi-wall carbon nanotubes and montmorillonite clay. Synergy between carbon nanotubes and clay and the brominated fire retardant was studied by thermogravimetric analysis, microscale combustion calorimetry and cone calorimetry. Nanotubes are more efficient than clay in improving the flame retardancy of the materials and promoting carbonization in the polystyrene matrix. Comparison of the results from the microscale combustion calorimeter and the cone calorimeter indicate that the rate of change of the peak heat release rate reduction in the microscale combustion calorimeter was slower than that in the cone. Both heat release capacity and reduction in the peak heat release rate in the microscale combustion calorimeter are important for screening the flame retardant materials; they show good correlations with the cone parameters, peak heat release rate and total heat released.  相似文献   

14.
以聚苯氧基磷酸联苯二酚酯(PBPP)与聚磷酸铵(APP)组成复合阻燃剂,对环氧树脂(EP)进行阻燃改性.通过氧指数(LOI)、垂直燃烧(UL-94)、热失重(TGA)、锥形量热(CONE)和扫描电镜(SEM)等方法研究改性环氧树脂的阻燃性能和阻燃机理.结果表明,PBPP/APP体系对EP具有较好的阻燃性能,阻燃剂添加量为10%时能使环氧树脂的氧指数提高到29.6%,垂直燃烧等级达到UL94 V-0级,残炭量大大增加;平均热释放速率下降45.7%,热释放速率峰值下降51.0%,有效燃烧热平均值下降21.1%;TGA、CONE、SEM等综合分析显示了PBPP/APP改性后的环氧树脂比纯环氧树脂具有更高的热稳定性,燃烧后能够形成连续、致密、封闭、坚硬的焦化炭层,在聚合物表面产生有效覆盖、隔绝了氧气,改善了环氧树脂的燃烧性能.  相似文献   

15.
A novel flame retardant containing phosphorous-nitrogen structure, the ammonium salt of 2-hydroxyl-5,5-dimethyl-2,2-oxo-1,3,2-dioxapho sphorinane (PNOH), was synthesized and its structure was characterized by 1H NMR and FTIR spectra. PNOH was used together with ammonium polyphosphate (APP) to prepare a novel intumescent flame retardant (IFR) for polyvinyl alcohol (PVA). When a few amounts (0.5%) of metal chelates were added, the flame retardancy of the IFR-PVA systems was significantly improved, having a high LOI value of 34.2 in a total IFR loading of 15 wt.%. In order to have an understanding of the resulting flame retardant effects, the thermal degradation behaviors of IFR-PVA systems were investigated by thermogravimetric analysis (TGA), and the morphology and structures of residues generated in different conditions were investigated by scanning electronic microscopy (SEM) and FTIR spectra. The results show that NiSAO can promote the thermal stability of the IFR-PVA; the residual char containing polyphosphoric or phosphoric acid is formed during the combustion; the formation of a continuous and dense char layer could inhibit the transmission of heat during contacting with flame and shows good flame retardancy.  相似文献   

16.
As flammable natural rubber (NR) becomes more ubiquitous in industrial fields, there is a growing need for safe and effective flame retardant treatments through efficient techniques. Remarkably, our developed highly efficient natural tannic acid (TA)-based intumescent flame-retardant system (AGT) has the unique function in the rubber flame retardant aspect. Meanwhile, the developed coating method through polyurethane elastomer (PU) both as adhesive medium and a carbonforming agent can not only minimize the influence of flame retardant on the desirable intrinsic properties of base polymer and also maximize the efficiency of flame retardant. The flame-retardant coating (AGT/PU) exhibits highly efficient flame retardant performances reflected by a 31.9% reduction in peak heat release rate and a 27.3% reduction in total heat release and a 26.2% reduction in total smoke production with 50 wt% loading in 1 mm thick coating due to synergistic flame retardant effects. More importantly, the excellent flame retardancy performance are obtained by the PU@AGT10, as reflected in flame retardancy index (FRI) value of 11.88 makes it as excellent flame retardancy performance. While many physically mixed flame retardants are usually seriously detrimental to mechanical properties of NR, the influence of AGT/PU coating on mechanical properties of NR decreases obviously because fire retardant just directly impacts on PU adhesive layer rather than NR matrix, and the reinforcement function of graphene is also much significant. Moreover, the coating method requires just less flame retardant to achieve high flame retardant effect for NR. These findings suggest that significant opportunities for flame retardant polymer materials in industry.  相似文献   

17.
A crosslinked silicone‐containing macromolecular charring agent (CSi‐MCA) was synthesized via “one‐pot” process, and it was combined with ammonium polyphosphate (APP) to synergistically improve the flame retardancy of poly(l ‐lactic acid) (PLA). The chemical structure of synthesized CSi‐MCA was characterized by Fourier transform infrared spectroscopy and solid‐state 13C nuclear magnetic resonance. The thermal gravimetric analyzer indicated that the CSi‐MCA displayed good thermal stability and high residue via the catalytic crosslinking. Furthermore, the flame retardant effect of CSi‐MCA and APP as intumescent flame retardants in PLA system was investigated by limited oxygen index, UL94, and cone calorimeter test. When the content of CSi‐MCA was 5 wt% and APP was 10 wt% (CSi‐MCA/APP = 1/2), the limited oxygen index value of composites was 33.6 and UL94 classed a V‐0 rating. The peak heat release rate and total heat release of PLA composites containing both APP and CSi‐MCA decreased significantly in comparison with those with APP or CSi‐MCA alone. The flame retardancy mechanism was investigated via analyzing residual chars by scanning electron microscopy and X‐ray photoelectron spectroscopy as well as the possible chemical reaction between APP and CSi‐MCA by thermal gravimetric analyzer and Fourier transform infrared spectroscopy. The results showed that the enhanced flame retardancy was attributed mainly to synergistic effect of CSi‐MCA and APP, which could form a compact, continuous, and protective layer during combustion. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
《先进技术聚合物》2018,29(6):1804-1814
Urea formaldehyde microsphere (UFM) was prepared and used with organic montmorillonite (OMMT) to modify the flame retardant efficiency of ethylene vinyl acetate copolymer (EVA)/intumescent flame retardant (IFR) composites. The results show that single IFR may modify the flame retardancy of EVA, but its efficiency is not good enough. The EVA composite containing 21 wt% IFR is just classified the UL_94 V2 and has a limiting oxygen index (LOI) 24.7 vol%. Combining UFM with IFR does not improve the flame retardancy of EVA/IFR composites, and blending OMMT with IFR only improves its LOI. Adding 2 wt% UFM, 2 wt% OMMT, and 17 wt% IFR into EVA, it obtains the UL_94 V0 without melt dripping and a LOI 29.0 vol%. Also, the peak heat release rate and total heat release decrease a lot. Good synergistic effects among IFR, UFM, and OMMT improve the char residues and modify the char micromorphology of EVA composites, which provide better protect for the underlying resin.  相似文献   

19.
A triazine ring‐containing charring agent (PEPATA) was synthesized via the reaction between 2,6,7‐trioxa‐l‐phosphabicyclo‐[2.2.2]octane‐4‐methanol (PEPA) and cyanuric chloride. It was applied into intumescent flame retardant epoxy resins (IFR‐EP) as a charring agent. The effect of PEPATA on fire retardancy and thermal degradation behavior of IFR‐EP system was investigated by limited oxygen index (LOI), UL‐94 test, microscale combustion calorimetry (MCC), thermogravimetric analysis (TGA) and thermogravimetric analysis/infrared spectrometry (TG‐IR). The glass transition temperatures (Tg) of IFR‐EP systems were studied by dynamic mechanical analysis (DMA). The LOI values increased from 21.5 for neat epoxy resins (EPs) to 34.0 for IFR‐EP, demonstrating improved flame retardancy. The TGA curves showed that the amount of residue of IFR‐EP system was largely increased compared to that of neat EP at 700 °C. The new IFR‐EP system could apparently reduce the amount of decomposing products at higher temperatures and promotes the formation of carbonaceous charred layers that slowed down the degradation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Metal‐organic framework MIL‐53 (Fe)@C/graphite carbon nitride hybrid (MFeCN), a novel flame retardant, was synthesized by hydrothermal reaction and subsequently added into unsaturated polyester resin (UPR). The structure, morphology, and thermal stability of MFeCN were characterized by Fourier transform infrared spectroscopy (FTIR), X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy‐dispersive X‐ray spectroscopy (EDS), and thermogravimetric analysis (TG). The thermal stability and flammability of the UPR composites were characterized by TG and cone calorimeter tests (CCT). The results of CCT demonstrated that the peak heat release rate (pHRR), total heat release (THR), peak smoke production rate (pSPR), and total smoke production (TSP) of UPR/MFeCN‐4 were reduced by 39.8%, 10.2%, 33.3%, and 14.5%, respectively, comparing with UPR. The results of TG and CCT indicated that MFeCN could improve the thermal stability, flame retardancy, and smoke suppression properties of the UPR composites. The residues after CCT were then characterized by laser Raman spectroscopy (LRS), XPS, and SEM. Finally, based on the above experimental results and analysis, the flame retardancy mechanism of MFeCN was proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号