首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Raman spectra of several pairs of alkenyl methyl ethers of general structure R1R2CCR5C(R3R4)OCH3 and R1R2C(OCH3)C(R5)CR3R4 (R1, R2, R3, R4, R5 = H or CnH2n+1, n = 1-3) are reported and discussed, with a view to establishing whether Raman spectroscopy offers a viable means of distinguishing between these isomeric unsaturated species. Key bands associated with the ν(sp2CH) and ν(CC) stretching modes are found to be particularly useful in this connection: R1R2CCHCH2OCH3 and R1R2C(OCH3)CHCH2 ethers (R1, R2 = CH3, C2H5) are easily distinguished on this basis. Differentiation of their lower homologues, R1CHCHCH2OCH3 and R1CH(OCH3)CHCH2 (R1 = CH3, C2H5, C3H7), by similar means is also quite straightforward, even in cases where cis and trans isomers are possible. Pairs of isomeric ethers, such as CH3CHC(CH3)CH2OCH3 and CH3CH(OCH3)C(CH3)CH2, in which the structural differences are more subtle, may also be distinguished with care. Deductions based on bands ascribed to the stretching vibrations are usually confirmed by consideration of the signals associated with the corresponding δ(sp2CH) deformation vibrations. Even C2H5CHCHCH(C3H7)OCH3 and C3H7CHCHCH(C2H5)OCH3 are found to have distinctive Raman spectra, but differentiation of these closely related isomers requires additional consideration of the low wavenumber region.  相似文献   

2.
Wang  Mei  Miguel  Daniel  Riera  Víctor  Bois  Claudette  Jeannin  Yves 《Transition Metal Chemistry》2001,26(4-5):566-569
A novel dimolybdenum complex [(3-C3H5)(CO)2Mo(-S2CPCy3)Mo(3-CH2CMeCH2)(CO)2], obtained by reacting the [(CO)2(3-C3H5)Mo(-S2CPCy3)Mo(CO)3] anion with an excess of ClCH2CMe=CH2, has been characterized by i.r., 31P{1H}, 1H- and 13C-n.m.r. spectroscopy and by elemental analysis. The crystal structure of the complex, determined by X-ray diffraction, shows a definite preference for the central carbon of the S2CPCy3 bridge to bind to the Mo(2) atom coordinated by 3-2-methylallyl, rather than the Mo(1) atom attached to unsubstituted 3-allyl ligand.  相似文献   

3.
Summary Reaction of 5,7-dioxo-1,4,8,11-tetra-azacyclotetradecane with acrylonitrile gives the dicyanoethylated ligand (L). The CuII complex [CuLH-2]·2H2O has been isolated from basic solution where the macrocycle is deprotonated and acts as a dinegative quadridentate ligand. The ligand L is protonated in acidic solution and the ionisation equilibria can be summarised as LH inf2 sup2+ LH+ +H+; K1 LH+ L + H+; K2 where pK1 = 3.05 and pK2 = 5.94 at 25 °C and I = 0.1 mol dm-3 (NaNO3). Complexation with CuII can be represented by the equilibria at 25 °C. Cu2+ + L [CuLH-1]+ + H+; log11 – 1 = -3.43 Cu2+ + L [CuLH-2] + 2H2+; log11 – 2 = -9.18 For NiII only the single equilibrium is of importance. Ni2+ + L [NiLH-2] + 2H2+; log11 – 2 = -14.45  相似文献   

4.
Chemical and electrochemical oxidation of rhodium (III) oxo-bridged carboxylate complexes was studied. The chemical [with O3 and Ce(IV) salts] or electrochemical (at potentials of 1.00-1.20 V) oxidations of the binuclear complexes [Rh2(-O)(-O2CCH3)2(H2O)6]2 + and [Rh2(-O)(-O2CCF3)2(H2O)6]2 + leads to the superoxo complexes [Rh2(-O)(O2-)(-O2CCH3)2(H2O)5]+ and [Rh2(-O)(O2 -)(-O2CCF3)2(H2O)5]+ with terminal coordination of O2-. The trinuclear acetate [Rh3(3-O)(-O2CCH3)6(H2O)3]+, unlike its trifluoroacetate analog [Rh3(3-O)(-O2CCF3)6(H2O)3]+, is oxidized only electrochemically at a potential of 1.38 V. The oxidation of [Rh3(3-O)(-O2CCH3)6(H2O)3]+ is reversible and involves formation of an unstable superoxo group O2 - between two Rh3III(3-O) cores.  相似文献   

5.
6.
The reactions of polynuclear cobalt(ii) trimethylacetates [Co(OH) n (OOCCMe3)2–n ] x , Co6(3-OH)2(OOCCMe3)10(HOOCCMe3)4, or Co4(3-OH)2(OOCCMe3)6(HOEt)6 with an excess of N-phenyl-o-phenylenediamine (1) in toluene followed by treatment with atmospheric oxygen afforded the diamagnetic complex [Co{2-(NPh)(NH)C6H4}2{1-(NH2)C6H4(NPhH)}]+(Me3CCOO...H...OOCCMe3) (3), whose cation contains the CoIII atom. The reaction of Co4(3-OH)2(OOCCMe3)6(HOEt)6 with a deficient amount of diamine 1 in acetonitrile under an argon atmosphere gave rise to the antiferromagnetic ionic complex [Co{2-(NPh)(NH)C6H4}2MeCN]+[Co2(2,2-OOCCMe3)(2-OOCCMe3)2(2-OOCCMe3)2]·2MeCN (4), whose cation is an isoelectronic analog of the cation in complex 3. The structures of the new compounds were established by X-ray diffraction analysis.  相似文献   

7.
Summary The syntheses of [Mo(5-C5H5)(3-C3H4R)(CO)(NO)]+ (R=H, 1- or 2-Me) and [Mo(5-C5H5)(3-C3H5)(NCR)(NO)]+ (R=Me or Ph), by treatment of Mo(5-C5H5)(CO)2(NO) with RC3H4Br and Ag+, and of Mo(5-C5H5)(3-C3H5)(NO)I with Ag+ in the presence of RCN, is described. Treatment of these cations with nucleophiles gives Mo(5-C5H5)(3-C3H5)(NO)X (X=halide, NCS or NCO), Mo(5-C5H5)(3-C3H5Q)(CO)(NO) (C3H5Q= propene ligand, Q= H, SCOMe, SEt, S2CNMe2, S2CNEt2, S2CN(Bu-n)2, C5H5, acac, OH, OMe or OAc), and [Mo(5-C5H5)(2C3H5L)(CO)(NO)]+ (L=PEt3, n-Bu3P, PPh3, PPh2H, PMe2Ph, C5H5N, 1-, 3- or 4-MeC5H4N and Me2NNH2). Reaction of [Mo(5-C5H5)(3-C3H5)(NCMe)(NO)+ with pyridine gave [Mo(5-C5H5)(3-C3H5)(pyr)(NO)]+, while treatment of [Mo(5-C5H5)(3-C3H5)(CO)(NO)]+ with PPh3 in the presence of NaOEt afforded Mo(5-C5H5)(CO)(NO)(PPh3). The1H and13C n.m.r. spectra of these complexes are discussed particularly in relation to the occurrence ofexo andendo isomers of the allylic species. Comparison is made briefly between Mo(5-C5H5)(3-C3H5)(NO)I and Mo(C5H5)2(NO)I.  相似文献   

8.
New tungsten carbyne complexes (ButO)3WC—SiPh3, [(ButO)3WC]2SiPh2, [(ButO)3WC]2GePh2, and [(ButO)3WC]2SnPh2 were prepared by the reactions of (But)6W2 with Ph3SiCC—Pr or Ph2E(CC—Pr)2 (E = Si, Ge, Sn) in individual crystalline form in 48—80% yields. The structures of both the (ButO)3WC—GePh3 and (ButO)3WC—SnPh3 compounds synthesized earlier and the new complexes were established by X-ray diffraction analysis.  相似文献   

9.
Summary Complexes of bidentate 3-amino-5-()-pyridyl-1,2,4-triazole (L1) and 3-amino-5-()-pyridyl-1, 2, 4-triazole (L2) of composition [ML1Cl2·H2O], [ML2Cl2·H2O], [ML 3 2/1 Cl2] and [ML 3 2/2 Cl2] [M=CoII, NiII, CuII, M=ZnII] have been prepared and characterized by elemental analyses, i.r., u.v./visible, e.s.r. spectra, magnetic moments and molar conductances.  相似文献   

10.
Experimental data are presented on the spectral (ESR, IR, and optical) and thermochemical characteristics of a complex between the (Si–O)3Si.radical and an N2O molecule. The rate constants of separate reactions in the systems (Si–O)3Si.+ N2O and (Ge–O)3Ge.+ N2O are found. The results of quantum chemical calculations of potential energy surfaces and spectral characteristics are presented for the following systems: H.+ N2O, H3C.+ N2O, H3Si.+ N2O, F2HSi.+ N2O, F3Si.+ N2O, and F3Ge.+ N2O. The latter three systems served as molecular models for experimentally found systems. Based on experimental and theoretical data, the product of N2O addition to (Si–O)3Si.has the structure Si–N=N–O.. The reactions of free radicals H., H3C., H3Si., F2HSi., F3Si., (Si–O)3Si., and (Ge–O)3Ge.with N2O are compared. The spectrum of optical absorbance of the (Si–O)3Si–O.radical is recorded and qualitatively characterized.  相似文献   

11.
Redox potentials: E(UO 2 2+ /UO 2 + )=60±4 mV/NHE, E(U4+/U3+)=–630±4mV/NHE measured at 25°C in acidic medium (HClO4 1M) using cyclic voltametry are in accordance with the published data. From 5°C to 55°C the variations of the potentials of these systems (measured against Ag/AgCl electrode) are linear. The entropies are then constant: [S(UO 2 2+ /UO 2 + )–S(Ag/AgCl)]/F=0±0.3 mV/°C, [S(U4+/U3+)–S(Ag/AgCl)]/F=1.5±0.3 mV/°C. From 5°C to 55°C, in carbonate medium (Na2CO3=0.2M), the Specific Ionic Interaction Theory can model the experimental results up to I=2M (Na+, ClO 4 , CO 3 2– ): E(UO2(CO3) 3 4– /UO2(CO3) 3 5– )=–778±5 mv/NHE (I=0, T=25°C, (25°C)=(UO2(CO3) 3 4– , Na+)–(UO2(CO3) 3 5– , Na+)=0.92 kg/mole, S(UO2(CO3) 3 4– /UO2(CO3) 3 5– =–1.8±0.5 mV/°C (I=0), =(Cl, Na+)=(1.14–0.007T) kg/mole. The U(VI/V) potential shift, between carbonate and acidic media, is used to calculate (at I=0,25°C):
  相似文献   

12.
The lithium complex with the acenaphthylene dianion [Li(Et2O)2]22:3[Li(3:3-C12H8)]2 (1) was synthesized by the reduction of acenaphthylene with lithium in diethyl ether. According to the X-ray diffraction data, compound 1 has a reverse-sandwich structure with the bridging dianion 2:3[Li(3:3-C12H8)]2. Two lithium atoms in complex 1 are located between two coplanar acenaphthylene ligands of the 2:3[Li(3:3-C12H8)]2 2– dianion and are 3-coordinated with the five- and six-membered rings. The lanthanum complex with the acenaphthylene dianion [LaI2(THF)3]2(2-C12H8) (2) was synthesized by the reduction of acenaphthylene in THF with the lanthanum(iii) complex [LaI2(THF)3]2(2-C10H8) containing the naphthalene dianion. The 1H NMR spectrum of complex 2 in THF-d8 exhibits four signals of the acenaphthylene dianion, whose strong upfield shifts compared to those of free acenaphthylene indicate the dianionic character of the ligand. The highest upfield chemical shift belongs to the proton bound to the C atom on which, according to calculation, the maximum negative charge is concentrated.  相似文献   

13.
In the thermolysis of the silaterazolines silatetrazoline tBu2SiNSiCltBu2 · tBu3SiN3 the silanimine tBu2SiNSiCltBu2 and the silyl azide tBu3SiN3 are formed quantitatively. The silanimine tBu2SiNSiCltBu2 has been trapped with Et3NHF, Me3NHCl, water, 1-butene, 2,3-dimethyl-1,3-butadiene, isobutene, methylvinyl ether, and tBu2SiClN3. The structure of the disiloxane (tBu2SiCl-NH-SitBu2)2O and of the bis(di-tert-butylchlorsilyl)-substituted silatetrazoline tBu2SiNSiCltBu2 · tBu2SiClN3 has been determined by X-ray structure analysis.  相似文献   

14.
New tetranuclear complexes have been prepared using bridging phosphide or thiolate groups between phosphine gold fragments and the compound [Ru3(CO)93243-{Me3SiCC(C2Fc)SC(Fc)CSCCSiMe3})]. The crystal structures of the intermediates [Ru3(CO)8(NMe3)(μ3243-{Me3SiCC(C2Fc)SC(Fc)CSCCSiMe3})] and [Ru3(CO)8(PPh2H)(μ3243-{Me3SiCC(C2Fc)SC(Fc)CSCCSiMe3})] have been solved.  相似文献   

15.
The reactions of 8-amino-2,4-dimethylquinoline (L) (1) with polynuclear nickel(ii) and cobalt(ii) hydroxotrimethylacetato complexes under anaerobic conditions were studied. The nonanuclear cluster Ni9(4-OH)3(3-OH)3(n-OOCCMe3)12(HOOCCMe3)4 gave the mononuclear complex Ni(2-L)(2-OOCCMe3)2 (2). The tetranuclear complex Ni4(3-OH)2(-OOCCMe3)4(2-OOCCMe3)2(EtOH)6 produced the mononuclear complex Ni(2-L)(2-OOCCMe3)(OOCCMe3)L (3). At room temperature, the cobalt-containing polynuclear trimethylacetates, viz., the polymer [Co(OH) n (OOCCMe3)2–n ] x and the tetranuclear complex Co4(3-OH)2(-OOCCMe3)4(2-OOCCMe3)2(EtOH)6, were transformed into the trinuclear cobalt(ii) complex Co3(3-OH)(-OOCCMe3)4(2-L)2(OOCCMe3) (4). Meanwhile, at 80 °C these compounds generated the binuclear cobalt(iii) complex Co2(22-(HN)C9NMe2)2(-OOCCMe3)(L)(OOCCMe3)3 (5). The structures of the resulting compounds were established by X-ray diffraction analysis. Compounds 24 exhibit the antiferromagnetic spin-spin exchange coupling, whereas compound 5 is diamagnetic.  相似文献   

16.
17.
In this study gamma irradiated NaHCO3, CsHCO3 and Na2CO3 were investigated at room temperature. The radicals induced by gamma irradiation in NaHCO3 were found to be CO3, HCO3 and CO2; in CsHCO3 the species were attributed to HCO3; and in Na2CO3 to CO3 and CO2 radicals. The hyperfine parameters for the hydrogen in HCO3, and the 13C nucleus in CO2 radical have been determined. The results were compared with literature data for similar compounds and the EPR properties of the CO2 radical were discussed.  相似文献   

18.
The rate constants of the addition of CCl3CH2ClCH3(R6) radicals to -methyl-styrene, styrene, methyl methacrylate, methyl acrylate, and acrylonitrile and of CCl3CH2(CH3)2(R7) radicals to styrene, methyl acrylate, and acrylonitrile were determined by ESR spectroscopy. It was shown that the radicals R6 and R7 possess approximately equal reactivity in addition to unsaturated compounds, despite the difference in the donor-acceptor properties of the substituents at the vinyl group. In a comparison of the reactivity of radicals R6 and R7 with the reactivity of radicals CCl3CH2H2(R1), CCl3CH2HCH3(R3), CCl3CH2HCl(R4), and ClCH2CH2Cl2(R5) [1] in addition reactions, it was shown that polar and steric effects of the substituents situated in the -position to the radical site of the above-mentioned radicals, as well as the donor-acceptor properties of the substituents at the vinyl group in the unsaturated compounds, lead to appreciable changes in reactivity.A. N. Nesmeyanov Institute of Heteroorganic Compounds, Russian Academy of Sciences, 117813 Moscow. Translated from Izvestiya Akademii Nauk, Seriya Khimicheskaya, No. 1, pp. 136–141, January, 1992.  相似文献   

19.
The solubility of CaSO3·1/2H2O(c) was studied under alkaline conditions (pH>8.2), in deaerated and deoxygenated Na2SO3 solutions ranging in concentration from 0.0002 to 0.4M and in CaCl2 solutions ranging in concentration from 0.0002 to 0.01M, for equilibration periods ranging from 1 to 7 days. Equilibrium was approached from both the over- and the under-saturation directions. In all cases, equilibrium was reached in <1 days. The aqueous Ca2+–SO 3 2– ion interactions can be satisfactorily modeled using either ion-association or ion-interaction aqueous thermodynamic models. In the ion-association model, the log K°=2.62±0.07 for Ca2++SO 3 2– CaSO 3 0 . In the Pitzer ion-interaction model, the binary parameters (0) and (1) for Ca2+–SO 4 2– were used, and the value of (2) was determined from the experimental data. As expected given the strong association constant, the value of (0) was quite small (about –134). We feel a combination of the two models is most useful. The logarithm of the thermodynamic equilibrium constant (K°) of the CaSO3·1/2H2O(c) solubility reaction (CaSO3·1/2H2O(c)Ca2++SO 3 2+ +0.5H2O) was found to be –6.64±0.07.  相似文献   

20.
Ab initio molecular orbital calculations have been carried out for 17 possible isomeric [C3H7O]+ structures. Optimized geometries have been obtained with a split-valence basis set and improved relative energies determined with polarization basis sets and with incorporation of electron correlation. The results agree well with available experimental data. In particular, (CH3)2COH+, CH3CH2CHOH+, CH3CHOCH3+, CH3CH2OCH2+, and have been confirmed as low-energy isomers. Six additional structures appear to be energetically accessible and to offer a reasonable prospect for experimental observation. These are CH2CHCH2OH2+, CH2C(CH3)OH2+, CH3CHCHOH2+, CH2CHOHCH3+, and .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号