首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 127 毫秒
1.
综述了近几年来氮杂环丙烷与含不饱和键化合物环加成反应的研究进展,主要包括[3+2],[3+3],[3+4],[3+2+2],[5+2]和[6+3]等环加成反应,并对其发展方向进行了展望.  相似文献   

2.
环加成反应是构建多官能团化环状化合物最直接、有效的方法之一.其中,三亚甲基甲烷(Trimethylenemethane,TMM)活性中间体被视为一类高效的三碳合成子.目前TMM已被广泛用于多种环加成反应,为一些重要的环状化合物以及天然化合物提供了高效、可靠的合成方法.早在1979年,Trost和Chan等[1]首次报道了Pd-TMM的[3+2]环加成反应.此后,钯催化TMM的多种催化不对称[3+2],[3+3]和[3+6]环加成反应相继得以实现[2,3],并为手性五元环、六元环及九元环类化合物提供了高效的合成策略.然而,对于钯催化TMM的不对称[3+4]环加成化反应——合成七元环状化合物的研究,目前尚无相关报道.其可能的主要原因是七元环状化合物的合成存在不利的熵效应和环化张力.  相似文献   

3.
综述了近年来铂催化[3+2]、[4+2]、[4+3]、[2+2]和[2+1]等环加成反应的研究进展,并对部分环加成反应可能的机理进行了讨论,同时提出了铂催化环加成反应的特点.  相似文献   

4.
《有机化学》2008,28(8)
乙烯基环丙烷(vcp)是过渡金属催化的环化反应中常用的一类底物,经常作为五碳合成子参与[5+2],[5+2+1],[(5+2)+1]等环加成反应.然而,VCP作为三碳合成子参与的[3+x]类环加成反应却鲜有报道.文献报道,仅当VCP上带有吸电子活化基团时才能发生自由基历程的或Pd(Ⅱ)-催化的[3+2]反应,使非活化的VCP作为三碳组分参与[3+x]类环加成反应将是很有意义的,  相似文献   

5.
综述了近年来镧系金属催化不对称环加成反应的研究进展,主要包括[4+2]、[3+2]、[2+2]和[2+1]不对称环加成反应.并对部分环加成反应可能的机理进行了讨论.  相似文献   

6.
综述了近年来钯催化[4+2]环加成反应的研究进展.重点讨论了钯催化[4+2]环加成反应的影响因素,如二烯体和亲二烯体、催化剂用量、配体、溶剂、反离子、温度及反应时间  相似文献   

7.
Stanford大学教授P .A .Wender的实验室发现了一种金属催化环加成反应。他们发现在有些金属催化的 [6 +2 ]环加成反应中 ,有一个副产物是由 [6 +2 - 1]过程生成的七元环化合物。Wender立即想到 ,[5 +2 ]反应可能会通过 [5 +2 +1]过程生成八元环。他们在一个铑催化的反应中证实了这个设想。当用很容易合成的乙烯基环丙烷和市场上就能买到的炔的衍生物在CO气氛下反应时 ,得到了八元环的产物。如图所示 ,由最初加合物的跨环闭合生成的双环辛烷酮的产率相当好三组分环加成反应@宋琦…  相似文献   

8.
有机膦小分子催化剂是一类具有较强亲核性的路易斯碱,在有机合成研究领域具有广泛应用.缺电子炔酯或炔酮与叔膦发生亲核加成反应可以生成两性离子中间体,进而发生各种有机化学反应,包括异构化反应、α-、β-、γ-加成反应以及[2+2]、[3+2]、[4+2]环加成反应,其中环加成反应为构建各种药物分子、天然产物以及生物活性分子提供了有效的手段,因此研究有机膦催化缺电子炔酯(炔酮)的环加成反应具有重要的意义,综述了近年来有机膦催化缺电子炔酯(炔酮)环加成反应研究进展与应用.  相似文献   

9.
罗人仕  杨定乔 《有机化学》2007,27(8):958-969
综述了近几年铑催化剂在环加成反应中的研究进展, 主要包括[2+2], [2+2+1], [2+2+2], [3+2], [3+4]和[4+2]环加成反应等, 讨论了铑催化下的环加成反应及其机理.  相似文献   

10.
综述了近几年来亚硝基化合物与含各种不饱和键化合物环加成反应的研究进展,主要包括[2+2]、[3+2]、[2+2+1]、[3+3]、[4+1]和[4+2]等环加成反应,并对其发展方向进行了展望.  相似文献   

11.
《Tetrahedron: Asymmetry》2014,25(13-14):957-961
The kinetic resolution of racemic C1-substituted oxabenzonorbornadienes was realized by iridium-catalyzed asymmetric [2+2] cycloaddition reaction with arylacetylenes. Cyclobutene products and unreacted C1-substituted oxabenzonorbornadienes were obtained with high to excellent enantiomeric purities.  相似文献   

12.
吡咯-2-甲酸酯广泛存在于生物活性分子中,在医药领域具有十分重要的应用,因此吡咯-2-甲酸酯类化合物的合成研究受到了广泛关注.过渡金属催化的环加成反应在合成吡咯骨架方面应用广泛,具有区域选择性专一的优点.且过渡金属配体导向的C-N键构筑方法具有原子步骤经济性较高、效率高、反应条件温和以及选择性高等优点.按照过渡金属催化剂分类,对吡咯-2-甲酸酯的[3+2]、[4+1]与[2+2+1]等成环反应的合成方法进行综述,介绍了过渡金属催化吡咯-2-甲酸酯化合物的机理及其应用,并对吡咯-2-甲酸酯的合成进行了展望.  相似文献   

13.
Prompted by our studies of transition metal-catalyzed [4+4], [4+2], [5+2], and [6+2] cycloadditions and by the view that these two-component reactions could be intercepted by a third component of one or more atoms, a new three-component transition metal-catalyzed cycloaddition is described. This new [5+2+1] cycloaddition proceeds in good to excellent yield and with high or complete regioselectivity with a variety of carbonyl-substituted alkynes to give bicyclo[3.3.0]octenone adducts, resulting from transannular closure of the intermediate eight-membered-ring cycloadduct. Effects of concentration, temperature, pressure, and catalyst loading on the efficiency of the reaction are discussed. This process provides access to complex building blocks for synthesis based on simple, readily available components.  相似文献   

14.
Conjugated cyclic trienes have the potential for different types of cycloaddition reactions. In the present work, we will, in a novel asymmetric cycloaddition reaction, demonstrate that the organocatalytic reaction of 2‐acyl cycloheptatrienes with azomethine ylides proceeds as a [3+2] cycloaddition, which is in contrast to the Lewis acid‐catalyzed reaction, in which a [3+6] cycloaddition takes place. In the presence of a chiral organosuperbase, 2‐acyl cycloheptatrienes react in a highly enantioselective manner in the [3+2] cycloaddition with azomethine ylides, providing the 1,3‐dipolar cycloaddition product in high yields and up to 99 % ee. It is also shown that the diene formed by the reaction can undergo stereoselective dihydroxylation, bromination, and cycloaddition reactions. Finally, based on experimental observations, some mechanistic considerations are discussed.  相似文献   

15.
In this paper, the mechanisms of the intermolecular [3+2] and [1+2] cycloaddition reactions of 1,1/1,3-dipolar π-delocalized singlet vinylcarbenes, which is obtained from cyclopropenone, with an electron-deficient C═O or C═C dipolarophile, to generate five-membered ring products are first disclosed by the density functional theory (DFT). Four reaction pathways, including two concerted [3+2] cycloaddition reaction pathways and two stepwise reaction pathways (an initial [1+2] cycloaddition and then a rearrangement from the [1+2] cycloadducts to the final [3+2] cycloadducts), are investigated at the B3LYP/6-31G(d,p) level of theory. The calculated results reveal that, in contrast to the concerted C═O [3+2] cycloaddition reaction pathway, which is 7.1 kcal/mol more energetically preferred compared with its stepwise reaction pathway, the C═C dipolarophile favors undergoing [1+2] cycloaddition rather than concerted [3+2] cycloaddition (difference of 5.3 kcal/mol). The lowest free energy barrier of the C═O concerted [3+2] cycloaddition reaction pathway shows that it predominates all other reaction pathways. This observation is consistent with the finding that the C═O [3 + 2] cycloadduct is the main product under experimental conditions. In addition, natural bond orbital second-order perturbation charge analyses are carried out to explain the preferred chemoselectivity of C═O to the C═C dipolarophile and the origins of cis-stereoselectivity for C═C [1+2] cycloaddition. Solvent effects are further considered at the B3LYP/6-31G(d,p) level in the solvents CH(3)CN, DMF, THF, CH(2)Cl(2), toluene, and benzene using the PCM model. The results indicate that the relative reaction trends and the main products are insensitive to the polarity of the reaction solvent.  相似文献   

16.
With the aid of computations and experiments, the detailed mechanism of the phosphine-catalyzed [3+2] cycloaddition reactions of allenoates and electron-deficient alkenes has been investigated. It was found that this reaction includes four consecutive processes: 1) In situ generation of a 1,3-dipole from allenoate and phosphine, 2) stepwise [3+2] cycloaddition, 3) a water-catalyzed [1,2]-hydrogen shift, and 4) elimination of the phosphine catalyst. In situ generation of the 1,3-dipole is key to all nucleophilic phosphine-catalyzed reactions. Through a kinetic study we have shown that the generation of the 1,3-dipole is the rate-determining step of the phosphine-catalyzed [3+2] cycloaddition reaction of allenoates and electron-deficient alkenes. DFT calculations and FMO analysis revealed that an electron-withdrawing group is required in the allene to ensure the generation of the 1,3-dipole kinetically and thermodynamically. Atoms-in-molecules (AIM) theory was used to analyze the stability of the 1,3-dipole. The regioselectivity of the [3+2] cycloaddition can be rationalized very well by FMO and AIM theories. Isotopic labeling experiments combined with DFT calculations showed that the commonly accepted intramolecular [1,2]-proton shift should be corrected to a water-catalyzed [1,2]-proton shift. Additional isotopic labeling experiments of the hetero-[3+2] cycloaddition of allenoates and electron-deficient imines further support this finding. This investigation has also been extended to the study of the phosphine-catalyzed [3+2] cycloaddition reaction of alkynoates as the three-carbon synthon, which showed that the generation of the 1,3-dipole in this reaction also occurs by a water-catalyzed process.  相似文献   

17.
The cycloaddition reactions of dichlorogermylene GeCl2 to ethylene, buta-1,3-diene, and hexa-1,3,5-triene were studied within the framework of the density functional theory (PBE and B3LYP density functionals) and by the ab initio CBS-QB3 method. The energy characteristics of the reaction of GeCl2 with ethylene were refined and non-empirical quantum chemical calculations of reaction pathways in the GeCl2 + buta-1,3-diene and GeCl2 + hexa-1,3,5-triene systems were carried out for the first time. It was shown that the [2+1] cycloaddition reactions are kinetically hindered and thermodynamically unfavorable, while the [4+1] and [6+1] cycloaddition reactions are characterized by low barriers and result in thermodynamically favorable products. For the [4+1] cycloaddition to buta-1,3-diene and [6+1] cycloaddition to hexa-1,3,5-triene, the most energetically favorable reaction pathways involve a suprafacial and antarafacial approach of reactants, respectively.  相似文献   

18.
We have developed novel bidentate Lewis acids that efficiently promote the intramolecular cycloaddition reactions of ester-tethered substrates. Bis-aluminated triflic amide derivatives [TfN(AlR(1)R(2))2], which are generated by simply mixing triflic amide and 2 equiv of methyl aluminum or aluminum hydride, catalyzed intramolecular Diels-Alder (DA) reactions of ester-tethered 1,7,9-trienes and intermolecular DA reactions of alpha,beta-unsaturated lactones. We also found that bimetallic Lewis acid derived from 1,1'-biphenyl-2,2'-di(triflyl)amide and dimethylaluminum chloride promoted the intramolecular [3 + 2] cycloaddition reaction of acrylate derivatives having an allylsilane part.  相似文献   

19.
The molecular mechanism of the domino inter [4 + 2]/intra [3 + 2] cycloaddition reactions of nitroalkenes with enol ethers to give nitroso acetal adducts has been characterized using density functional theory methods with the B3LYP functional and the 6-31G basis set. The presence of Lewis acid catalyst and solvent effects has been taken into account to model the experimental environment. These domino processes comprise two consecutive cycloaddition reactions: the first one is an intermolecular [4 + 2] cycloaddition of the enol ether to the nitroalkene to give a nitronate intermediate, which then affords the final nitroso acetal adduct through an intramolecular [3 + 2] cycloaddition reaction. The intermolecular [4 + 2] cycloaddition can be considered as a nucleophilic attack of the enol ether to the conjugated position of the nitroalkene, with concomitant ring closure and without intervention of an intermediate. For this cycloaddition process, the presence of the Lewis acid favors the delocalization of the negative charge that is being transferred from the enol ether to the nitroalkene and decreases the activation energy of the first cycloaddition. The [4 + 2] cycloaddition presents a total regioselectivity, while the endo/exo stereoselectivity depends on the bulk of the Lewis acid used as catalyst. Thus, for small Lewis acid catalyst, modeled by BH(3), the addition presents an endo selectivity. The [3 + 2] cycloaddition reactions present an total exo selectivity, due to the constraints imposed by the tether. Inclusion of Lewis acid catalyst and solvent effects decrease clearly the barrier for the first [4 + 2] cycloaddition relative to the second [3 + 2] one. Calculations for the activation parameters along this domino reaction allow to validate the results obtained using the potential energy barriers.  相似文献   

20.
In recent years, visible light photoredox catalysis has emerged as an important research area in synthesis. In this review, we describe the recent progress in the visible light induced cycloaddition reactions, including [2+2], [3+2], [4+2] and [2+2+2] cycloadditions, for the construction of four-, five- or six-membered cycles and polycycles. Furthermore, the mechanisms for these transformations are also discussed, in which the formation of the radicals is initiated by a visible light photoredox catalysis process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号