首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The radical cation of an NADH analogue (BNAH: 1-benzyl-1,4-dihydronicotinamide) has been successfully detected as the transient absorption and ESR spectra in the thermal electron transfer from BNAH to Fe(bpy)(3)(3+) (bpy = 2,2'-bipyridine) and Ru(bpy)(3)(3+). The ESR spectra of the radical cations of BNAH and the dideuterated compound (BNAH-4,4'-d(2)) indicate that the observed radical cation is the keto form rather than the enol form in the tautomerization. The deprotonation rate and the kinetic isotope effects of the keto form of BNAH(*)(+) were determined from the kinetic analysis of the electron-transfer reactions. In the case of electron transfer from BNAH to Ru(bpy)(3)(3+), the chemiluminescence due to Ru(bpy)(3)(2+) was observed in the second electron-transfer step from BNA(*), produced by the deprotonation of the keto form of BNAH(*)(+), to Ru(bpy)(3)(3+). The observation of chemiluminescence due to Ru(bpy)(3)(2+) provides compelling evidence that the Marcus inverted region is observed even for such an intermolecular electron-transfer reaction. When BNAH is replaced by 4-tert-butylated BNAH (4-t-BuBNAH), no chemiluminescence due to Ru(bpy)(3)(2+) has been observed in the electron transfer from 4-t-BuBNAH to Ru(bpy)(3)(3+). This is ascribed to the facile C-C bond cleavage in 4-t-BuBNAH(*)(+). In the laser flash photolysis of a deaerated MeCN solution of BNAH and CHBr(3), the transient absorption spectrum of the enol form of BNAH(*)(+) was detected instead of the keto form of BNAH(*)(+), and the enol form was tautomerized to the keto form. The rate of intramolecular proton transfer in the enol form to produce the keto form of BNAH(*)(+) was determined from the decay of the absorption band due to the enol form and the rise in the absorption band due to the keto form. The kinetic isotope effects were observed for the intramolecular proton-transfer process in the keto form to produce the enol form.  相似文献   

2.
Two multifunctional photoactive complexes [Re(Cl)(CO)(3)(MeDpe(+))(2)](2+) and [Re(MeDpe(+))(CO)(3)(bpy)](2+) (MeDpe(+)=N-methyl-4-[trans-2-(4-pyridyl)ethenyl]pyridinium, bpy=2,2'-bipyridine) were synthesized, characterized, and their redox and photonic properties were investigated by cyclic voltammetry; ultraviolet-visible-infrared (UV/Vis/IR) spectroelectrochemistry, stationary UV/Vis and resonance Raman spectroscopy; photolysis; picosecond time-resolved absorption spectroscopy in the visible and infrared regions; and time-resolved resonance Raman spectroscopy. The first reduction step of either complex occurs at about -1.1 V versus Fc/Fc(+) and is localized at MeDpe(+). Reduction alone does not induce a trans-->cis isomerization of MeDpe(+). [Re(Cl)(CO)(3)(MeDpe(+))(2)](2+) is photostable, while [Re(MeDpe(+))(CO)(3)(bpy)](2+) and free MeDpe(+) isomerize under near-UV irradiation. The lowest excited state of [Re(Cl)(CO)(3)(MeDpe(+))(2)](2+) has been identified as the Re(Cl)(CO)(3)-->MeDpe(+ 3)MLCT (MLCT=metal-to-ligand charge transfer), decaying directly to the ground state with lifetimes of approximately 42 (73 %) and approximately 430 ps (27 %). Optical excitation of [Re(MeDpe(+))(CO)(3)(bpy)](2+) leads to population of Re(CO)(3)-->MeDpe(+) and Re(CO)(3)-->bpy (3)MLCT states, from which a MeDpe(+) localized intraligand (3)pipi* excited state ((3)IL) is populated with lifetimes of approximately 0.6 and approximately 10 ps, respectively. The (3)IL state undergoes a approximately 21 ps internal rotation, which eventually produces the cis isomer on a much longer timescale. The different excited-state behavior of the two complexes and the absence of thermodynamically favorable interligand electron transfer in excited [Re(MeDpe(+))(CO)(3)(bpy)](2+) reflect the fine energetic balance between excited states of different orbital origin, which can be tuned by subtle structural variations. The complex [Re(MeDpe(+))(CO)(3)(bpy)](2+) emerges as a prototypical, multifunctional species with complementary redox and photonic behavior.  相似文献   

3.
Intermolecular electron and energy transfer from a light-harvesting metallodendrimer [Ru[bpy(C-450)(4)](3)](2+), where bpy(C-450)(4) is a 2,2'-bipyridine derivative containing 4 coumarin-450 units connected together through aryl ether linkages, is observed in acetonitrile solutions at room temperature. The model complex [Ru(dmb)(3)](2+), where dmb is 4,4'-dimethyl-2,2'-bipyridine, is included for quantitative comparison. The excited states of both compounds are metal-to-ligand charge transfer in nature and participate in excited-state electron and triplet energy transfer processes. Quenching constants were determined from luminescence and time-resolved absorption experiments at constant ionic strength. [Ru[bpy(C-450)(4)](3)](2+) displays significantly slower quenching rates to molecular oxygen and methyl viologen relative to the other processes investigated. Triplet energy transfer from [Ru[bpy(C-450)(4)](3)](2+) to 9-methylanthracene is quantitatively indistinguishable from [Ru(dmb)(3)](2+) while reductive electron transfer from phenothiazine was slightly faster in the former. With the exception of dioxygen quenching, our results indicate that the current dendritic structure is ineffective in shielding the core from bimolecular electron and triplet energy transfer reactions. Electrochemical measurements of [Ru[bpy(C-450)(4)](3)](2+) reveal irreversible oxidative processes at potentials slightly negative to the Ru(III/II) potential that are assigned to oxidations in the dendritic structure. Excited-state oxidative electron-transfer reactions facilitate this process resulting in the reduction of ground-state Ru(III) to Ru(II) and the trapping of the methyl viologen radical cation (MV(*+)) when methyl viologen serves as the quencher. This process generates a minimum of 9 MV(*+)'s for every [Ru[bpy(C-450)(4)](3)](2+) molecule and disassembles the metallodendrimer, resulting in the production of a [Ru(dmb)(3)](2+)-like species and "free" C-450-like dyes.  相似文献   

4.
Two electron donor-acceptor triads based on a benzoquinone acceptor linked to a light absorbing [Ru(bpy)(3)](2+) complex have been synthesized. In triad 6 (denoted Ru(II)-BQ-Co(III)), a [Co(bpy)(3)](3+) complex, a potential secondary acceptor, was linked to the quinone. In the other triad, 8 (denoted PTZ-Ru(II)-BQ), a phenothiazine donor was linked to the ruthenium moiety. The corresponding dyads Ru(II)-BQ (4) and PTZ-Ru(II) (9) were prepared for comparison. Upon light excitation in the visible band of the ruthenium moiety, electron transfer to the quinone occurred with a rate constant k(f) = 5 x 10(9) s(-)(1) (tau(f) = 200 ps) in all the quinone containing complexes. Recombination to the ground state followed, with a rate constant k(b) approximately 4.5 x 10(8) s(-)(1) (tau(b) approximately 2.2 ns), for both Ru(II)-BQ and Ru(II)-BQ-Co(III) with no indication of a charge shift to generate the reduced Co(II) moiety. In the PTZ-Ru(II)-BQ triad, however, the initial charge separation was followed by a rapid (k > 5 x 10(9) s(-)(1)) electron transfer from the phenothiazine moiety to give the fairly long-lived PTZ(*)(+)-Ru(II)-BQ(*)(-) state (tau = 80 ns) in unusually high yield for a [Ru(bpy)(3)](2+)-based triad (> 90%), that lies at DeltaG degrees = 1.32 eV relative to the ground state. Unfortunately, this triad turned out to be rather photolabile. Interestingly, coupling between the oxidized PTZ(*)(+) and the BQ(*)(-) moieties seemed to occur. This discouraged further extension to incorporate more redox active units. Finally, in the dyad PTZ-Ru(II) a reversible, near isoergonic electron transfer was observed on excitation. Thus, a quasiequilibrium was established with an observed time constant of 7 ns, with ca. 82% of the population in the PTZ-Ru(II) state and 18% in the PTZ(*)(+)-Ru(II)(bpy(*)(-)) state. These states decayed in parallel with an observed lifetime of 90 ns. The initial electron transfer to form the PTZ(*)(+)-Ru(II)(bpy(*)(-)) state was thus faster than what would have been inferred from the Ru(II) emission decay (tau = 90 ns). This result suggests that reports for related PTZ-Ru(II) and PTZ-Ru(II)-acceptor complexes in the literature might need to be reconsidered.  相似文献   

5.
A sample of novel delaminated zeolite ITQ-2 containing Ru(bpy)3(2+) on the external cups and MV2+ included in the independent and not connected channels has been prepared; emission and time-resolved laser flash photolysis has shown unambigously that photoinduced electron transfer from Ru(bpy)3(2+) to MV2+ occurs through the zeolite framework.  相似文献   

6.
Photolysis of Ru(bpy)(2)(en)(2+) and Ru(bpy)(2)(tn)(2+), where bpy = 2,2'-bipyridine, en = ethylenediamine, and tn = 1,3-propylenediamine, was studied in acetonitrile using on-line electrospray mass spectrometry (ES-MS). These complexes are known to undergo a four-electron oxidation photochemically, giving the alpha,alpha'-diimine complexes. The monoimine complexes involved in this stepwise process were detectable after photoirradiation (lambda >420 nm). Also, new ligand-oxidized complexes Ru(bpy)(2)(en+14)(2+) and Ru(bpy)(2)(tn+14)(2+) were observed together with photosubstitution products such as Ru(bpy)(2)(AN)(2)(2+) and Ru(bpy)(2)(AN)(2)X(+) (AN = acetonitrile). The notation (en+14) and (tn+14) represents loss of two hydrogen atoms and addition of an oxygen atom to the en and tn ligands. Photosubstitution intermediates with the monodentate diamine, Ru(bpy)(2)(tn)(AN)(2+) and Ru(bpy)(2)(tn)(AN)X(+), were detected in the ES mass spectrum of the tn complex but not in that of the en complex. Other photosubstituted intermediates with the monodentate (en+14) and (tn+14) ligands were detected by on-line mass analysis. The electrospray technique combined with use of a flow-through photoreaction cell was shown to be a useful tool for studying photolysis of inorganic metal complexes.  相似文献   

7.
The physical and photophysical properties of a series of monometallic, [Ru(bpy)(2)(dmb)](2+), [Ru(bpy)(2)(BPY)](2+), [Ru(bpy)(Obpy)](2+) and [Ru(bpy)(2)(Obpy)](2+), and bimetallic, [{Ru(bpy)(2)}(2)(BPY)](4+) and [{Ru(bpy)(2)}(2)(Obpy)](4+), complexes are examined, where bpy is 2,2'-bipyridine, dmb is 4,4'-dimethyl-2,2'-bipyridine, BPY is 1,2-bis(4-methyl-2,2'-bipyridin-4'-yl)ethane, and Obpy is 1,2-bis(2,2'-bipyridin-6-yl)ethane. The complexes display metal-to-ligand charge transfer transitions in the 450 nm region, intraligand pi --> pi transitions at energies greater than 300 nm, a reversible oxidation of the ruthenium(II) center in the 1.25-1.40 V vs SSCE region, a series of three reductions associated with each coordinated ligand commencing at -1.3 V and ending at approximately -1.9 V, and emission from a (3)MLCT state having energy maxima between 598 and 610 nm. The Ru(III)/Ru(II) oxidation of the two bimetallic complexes is a single, two one-electron process. Relative to [Ru(bpy)(2)(BPY)](2+), the Ru(III)/Ru(II) potential for [Ru(bpy)(2)(Obpy)](2+) increases from 1.24 to 1.35 V, the room temperature emission lifetime decreases from 740 to 3 ns, and the emission quantum yield decreases from 0.078 to 0.000 23. Similarly, relative to [{Ru(bpy)(2)}(2)(BPY)](4+), the Ru(III)/Ru(II) potential for [{Ru(bpy)(2)}(2)(Obpy)](4+) increases from 1.28 to 1.32 V, the room temperature emission lifetime decreases from 770 to 3 ns, and the room temperature emission quantum yield decreases from 0.079 to 0.000 26. Emission lifetimes measured in 4:1 ethanol:methanol were temperature dependent over 90-360 K. In the fluid environment, emission lifetimes display a biexponential energy dependence ranging from 100 to 241 cm(-)(1) for the first energy of activation and 2300-4300 cm(-)(1) for the second one. The smaller energy is attributed to changes in the local matrix of the chromophores and the larger energy of activation to population of a higher energy dd state. Explanations for the variations in physical properties are based on molecular mechanics calculations which reveal that the Ru-N bond distance increases from 2.05 ? (from Ru(II) to bpy and BPY) to 2.08 ? (from Ru(II) to Obpy) and that the metal-to-metal distance increases from approximately 7.5 ? for [{Ru(bpy)(2)}(2)(Obpy)](4+) to approximately 14 ? for [{Ru(bpy)(2)}(2)(BPY)](4+).  相似文献   

8.
The geometry and electronic structure of cis-[Ru(II)(bpy)(2)(H(2)O)(2)](2+) and its higher oxidation state species up formally to Ru(VI) have been studied by means of UV-vis, EPR, XAS, and DFT and CASSCF/CASPT2 calculations. DFT calculations of the molecular structures of these species show that, as the oxidation state increases, the Ru-O bond distance decreases, indicating increased degrees of Ru-O multiple bonding. In addition, the O-Ru-O valence bond angle increases as the oxidation state increases. EPR spectroscopy and quantum chemical calculations indicate that low-spin configurations are favored for all oxidation states. Thus, cis-[Ru(IV)(bpy)(2)(OH)(2)](2+) (d(4)) has a singlet ground state and is EPR-silent at low temperatures, while cis-[Ru(V)(bpy)(2)(O)(OH)](2+) (d(3)) has a doublet ground state. XAS spectroscopy of higher oxidation state species and DFT calculations further illuminate the electronic structures of these complexes, particularly with respect to the covalent character of the O-Ru-O fragment. In addition, the photochemical isomerization of cis-[Ru(II)(bpy)(2)(H(2)O)(2)](2+) to its trans-[Ru(II)(bpy)(2)(H(2)O)(2)](2+) isomer has been fully characterized through quantum chemical calculations. The excited-state process is predicted to involve decoordination of one aqua ligand, which leads to a coordinatively unsaturated complex that undergoes structural rearrangement followed by recoordination of water to yield the trans isomer.  相似文献   

9.
Guo Z  Shen Y  Zhao F  Wang M  Dong S 《The Analyst》2004,129(7):657-663
The electrochemical and electrogenerated chemiluminescence of Ru(bpy)(3)(2+) immobilized in [clay/Ru(bpy)(3)(2+)](n) multilayer films by layer-by-layer assembly were investigated. The stable multilayer films of clay and Ru(bpy)(3)(2+) were assembled by alternate adsorption of negatively charged clay platelets and positively charged Ru(bpy)(3)(2+) from their aqueous dispersions. UV-vis spectroscopy, quartz crystal microbalance (QCM), cyclic voltammetry, and electrogenerated chemiluminescence (ECL) were used to monitor the immobilization of Ru(bpy)(3)(2+) and the regular growth of the [clay/Ru(bpy)(3)(2+)](n) multilayer films. The multilayer films modified electrode was used for the ECL detection of tripropylamine (TPA) and oxalate. The proposed novel immobilized method exhibited good stability, reproducibility and high sensitivity for the determination of TPA and oxalate, which mainly resulted from the contributing of clay nanoparticles with appreciable surface area, special structural features and unusual intercalation properties. Detection limits were 20 and 100 nM for TPA and oxalate, respectively and the linear concentration range extended from 60 nM to 0.66 mM for TPA.  相似文献   

10.
Wang X  Bobbitt DR 《Talanta》2000,53(2):337-345
In situ generated Ru(bpy)(3)(3+)-based chemiluminescence (CL) detection will be shown to be compatible with micellar electrokinetic chromatography (MEKC) providing significant advantages over other Ru(3+) generation protocols. The CL reagent, Ru(bpy)(3)(2+) is continuously added post-capillary to avoid precipitating the anionic surfactant used to enhance the separation of neutral analytes. Ru(bpy)(3)(3+) is then electrochemically generated in situ at the interface between the separation capillary and the working electrode, where it can react with specific analytes, for example amines and amino acids to produce chemiluminescent emission. With this scheme, the critical micelle concentration is not exceeded in the detection zone, freeing the analyte to react with the Ru(bpy)(3)(3+) CL reagent. The separation and detection of various underivatized amines will be demonstrated using this methodology. For triethylamine, 70 000 plates per meter are demonstrated with MEKC providing a limit of detection (S/N=2) of 1.5 fmol of injected mass. The experimental approach used to improve the limit of detection while maintaining high separation efficiency will be evaluated and discussed.  相似文献   

11.
Reactions of hydride complexes of ruthenium(II) with hydride acceptors have been examined for Ru(terpy)(bpy)H(+), Ru(terpy)(dmb)H(+), and Ru(η(6)-C(6)Me(6))(bpy)(H)(+) in aqueous media at 25 °C (terpy = 2,2';6',2'-terpyridine, bpy = 2,2'-bipyridine, dmb = 4,4'-dimethyl-2,2'-bipyridine). The acceptors include CO(2), CO, CH(2)O, and H(3)O(+). CO reacts with Ru(terpy)(dmb)H(+) with a rate constant of 1.2 (0.2) × 10(1) M(-1) s(-1), but for Ru(η(6)-C(6)Me(6))(bpy)(H)(+), the reaction was very slow, k ≤ 0.1 M(-1) s(-1). Ru(terpy)(bpy)H(+) and Ru(η(6)-C(6)Me(6))(bpy)(H)(+) react with CH(2)O with rate constants of (6 ± 4) × 10(6) and 1.1 × 10(3) M(-1) s(-1), respectively. The reaction of Ru(η(6)-C(6)Me(6))(bpy)(H)(+) with acid exhibits straightforward, second-order kinetics, with the rate proportional to [Ru(η(6)-C(6)Me(6))(bpy)(H)(+)] and [H(3)O(+)] and k = 2.2 × 10(1) M(-1) s(-1) (μ = 0.1 M, Na(2)SO(4) medium). However, for the case of Ru(terpy)(bpy)H(+), the protonation step is very rapid, and only the formation of the product Ru(terpy)(bpy)(H(2)O)(2+) (presumably via a dihydrogen or dihydride complex) is observed with a k(obs) of ca. 4 s(-1). The hydricities of HCO(2)(-), HCO(-), and H(3)CO(-) in water are estimated as +1.48, -0.76, and +1.57 eV/molecule (+34, -17.5, +36 kcal/mol), respectively. Theoretical studies of the reactions with CO(2) reveal a "product-like" transition state with short C-H and long M-H distances. (Reactant) Ru-H stretched 0.68 ?; (product) C-H stretched only 0.04 ?. The role of water solvent was explored by including one, two, or three water molecules in the calculation.  相似文献   

12.
The (15)N-labeled diammine(mu-oxo)ruthenium complex cis,cis-[(bpy)(2)(H(3)(15)N)Ru(III)ORu(III)((15)NH(3))(bpy)(2)](4+) ((2-(15)N)(4+)) was synthesized from cis,cis-[(bpy)(2)(H(2)O)Ru(III)ORu(III)(H(2)O)(bpy)(2)](4+) by using ((15)NH(4))(2)SO(4) and isolated as its perchlorate salt in 17% yield. A 1:1 mixture of (2-(15)N)(4+) and nonlabeled cis,cis-[(bpy)(2)(H(3)(14)N)Ru(III)ORu(III)((14)NH(3))(bpy)(2)](4+) were electrochemically oxidized in aqueous solution. The gaseous products (14)N(2) and (15)N(2) were formed in equimolar amounts with only a small amount of (14)N(15)N detected. This demonstrates that dinitrogen formation by oxidation of the diammine complex proceeds by intramolecular N---N coupling.  相似文献   

13.
Effective photocurrent generation by visible light irradiation on hetero-deposited polymer Langmuir-Blodgett (LB) films containing tris(bipyridine) ruthenium(II) (Ru(bpy)3(2+)) and anthracene derivatives was observed. The photocurrent amplification was found to be assisted by the photoinduced energy/electron transfer cascade, which consists of the interlayer triplet-triplet energy transfer process from photoexcited Ru(bpy)3(2+) to anthracene, and then electron transfer processes from the triplet anthracene to a viologen acceptor, from Ru(bpy)3(2+) to the oxidized anthracene and from the electrode to Ru(bpy)3(3+).  相似文献   

14.
In our hopes to improve the photocatalytic efficiency of photo-hydrogen-evolving molecular devices, several new dyads and triads possessing a photosensitizing Ru(bpy)(phen)(2)(2+) (or Ru(phen)(3)(2+)) chromophore (abbreviated as Ru(II)) attached to both/either a phenothiazine moiety (abbreviated as Phz) and/or H(2)-evolving PtCl(2)(bpy) units (abbreviated as Pt), such as Phz-Ru(II)-Pt2 (triad), Ru(II)-Pt2 (dyad), and Ru(II)-Pt3 (dyad), were synthesized and their basic properties together with the photo-hydrogen-evolving characteristics were investigated in detail. The (3)MLCT phosphorescence from the Ru(II) moiety in these systems is substantially quenched due to the highly efficient photoinduced electron transfer (PET). Based on the electrochemical studies, the driving forces for the PET were estimated as -0.07 eV for Phz-Ru(II)-Pt2, -0.24 eV for Ru(II)-Pt2, and -0.22 eV for Ru(II)-Pt3, revealing the exergonic character of the PET in these systems. Luminescence lifetime studies revealed the existence of more than two decay components, indicative of a contribution of multiple PET processes arising from the presence of at least two different conformers in solution. The major luminescence decay components of the hybrid systems [τ(1) = 6.5 ns (Ru(II)-Pt2) and τ(1) = 1.04 ns (Phz-Ru(II)-Pt2) in acetonitrile] are much shorter than those of Phz-free/Pt-free Ru(bpy)(phen)(2)(2+) derivatives. An important finding is that the triad Phz-Ru(II)-Pt2 affords a quite long-lived charge separated (CS) state (τ(CS) = 43 ns), denoted as Phz(+)˙-Ru(Red)-Pt2, as a result of reductive quenching of the triplet excited state of Ru(bpy)(phen)(2)(2+) by the tethering Phz moiety, where Ru(Red) denotes Ru(bpy)(phen)(2)(+). Moreover, the lifetime of Phz(+)˙-Ru(Red)-Pt2 was observed to be much longer than that of Phz(+)˙-Ru(Red). The photocatalytic H(2) evolution from water driven by these systems was examined in an aqueous acetate buffer solution (pH 5.0) containing 4-19% dimethylsulfoxide (solubilising reagent) in the presence of EDTA as a sacrificial electron donor. Dyads Ru(II)-Pt2 and Ru(II)-Pt3 were found to exhibit improved photo-hydrogen-evolving activity compared to the heterodinuclear Ru-Pt dyads developed so far in our group. On the other hand, almost no catalytic activity was observed for Phz-Ru(II)-Pt2 in spite of the formation of a strongly reducing Ru(Red) site (Phz(+)˙-Ru(Red)-Pt2), indicating that the electron transfer from the photogenerated Ru(Red) unit to the PtCl(2)(bpy) unit is not favoured presumably due to the slow electron transfer rate in the Marcus inverted region.  相似文献   

15.
The series of 4-center unsaturated chelate ligands A═B-C═D with redox activity to yield (-)A-B═C-D(-) in two steps has been complemented by two new combinations RNNC(R')E, E = O or S, R = R' = Ph. The ligands N-benzoyl-N'-phenyldiazene = L(O), and N-thiobenzoyl-N'-phenyldiazene = L(S), (obtained in situ) form structurally characterized compounds [(acac)(2)Ru(L)], 1 with L = L(O), and 3 with L = L(S), and [(bpy)(2)Ru(L)](PF(6)), 2(PF(6)) with L = L(O), and 4(PF(6)) with L = L(S) (acac(-) = 2,4-pentanedionato; bpy = 2,2'-bipyridine). According to spectroscopy and the N-N distances around 1.35 ? and N-C bond lengths of about 1.33 ?, all complexes involve the monoanionic (radical) ligand form. For 1 and 3, the antiferromagnetic spin-spin coupling with electron transfer-generated Ru(III) leads to diamagnetic ground states of the neutral complexes, whereas the cations 2(+) and 4(+) are EPR-active radical ligand complexes of Ru(II). The complexes are reduced and oxidized in reversible one-electron steps. Electron paramagnetic resonance (EPR) and UV-vis-NIR spectroelectrochemistry in conjunction with time-dependent density functional theory (TD-DFT) calculations allowed us to assign the electronic transitions in the redox series, revealing mostly ligand-centered electron transfer: [(acac)(2)Ru(III)(L(0))](+) ? [(acac)(2)Ru(III)(L(?-))] ? [(acac)(2)Ru(III)(L(2-))](-)/[(acac)(2)Ru(II)(L(?-))](-), and [(bpy)(2)Ru(III)(L(?-))](2+)/[(bpy)(2)Ru(II)(L(0))](2+) ? [(bpy)(2)Ru(II)(L(?-))](+) ? [(bpy)(2)Ru(II)(L(2-))](0). The differences between the O and S containing compounds are rather small in comparison to the effects of the ancillary ligands, acac(-) versus bpy.  相似文献   

16.
Ionic liquids are suitable media which stabilize charged intermediates favoring those mechanisms that occur through charge separation. We have used ionic liquids to develop a photocatalytic system to perform the reduction of a carbonyl group to alcohol, thus mimicking the behavior of the reductase enzymes. The photochemical cycle is based on the well-known electron transfer from the Ru(bpy)(3)2+ complex in its excited state, acting as electron donor to MV2+, which acts as electron acceptor. The initial electron transfer process can be promoted upon selective Ru(bpy)(3)2+ excitation by visible light. By means of laser flash photolysis we have provided evidence of the nature and lifetimes of the intermediates involved in the photocatalytic system. Thus, the initial electron transfer between Ru(bpy)(3)2+ triplets and viologen MV2+ forms the MV*+ radical cation, which upon accepting an H* atom from a suitable hydrogen atom donor, forms the corresponding dihydropyridine MVH+ reducing agent.  相似文献   

17.
研究利用分子筛、Nafion薄膜、低密度聚乙烯薄膜和囊泡作为微反应器控制有机光化学反应的方向,提高反应的选择性和可能性.在NaY沸石或低密度聚乙烯薄膜中,带有长烷基链或醚链的二芳基化合物光二聚只生成分子内的加成产物,而不生成分子间的加成产物,从而在底物浓度很大的情况下,高选择性地合成了大环化合物.通过控制底物和敏化剂分子在ZSM-5沸石、Nafion薄膜和囊泡中的分布高选择性地控制烯烃光敏氧化反应的方向,单一地生成单重态氧的氧化产物或超氧负离子的氧化产物.利用Nafion薄膜作为介质进行光诱导电子转移,得到超长寿命的电荷分离态.  相似文献   

18.
A tungsten trioxide (WO(3))/tris(2,2'-bipyridine)ruthenium(II) ([Ru(bpy)(3)](2+); bpy=2,2'-bipyridine)/poly(sodium 4-styrenesulfonate) (PSS) hybrid film was prepared by electrodeposition from a colloidal triad solution containing peroxotungstic acid (PTA), [Ru(bpy)(3)](2+), and PSS. A binary solution of [Ru(bpy)(3)](2+) and PTA (30 vol % ethanol in water) gradually gave an orange precipitate, possibly caused by the electrostatic interaction between the cationic [Ru(bpy)(3)](2+) and the anionic PTA. The addition of PSS to the binary PTA/[Ru(bpy)(3)](2+) solution remarkably suppressed this precipitation and caused a stable, colloidal triad solution to form. The spectrophotometric measurements and lifetime analyses of the photoluminescence from the excited [Ru(bpy)(3)](2+) ion in the colloidal triad solution suggested that the [Ru(bpy)(3)](2+) ion is partially shielded from electrostatic interaction with anionic PTA by the anionic PSS polymer chain. The formation of the colloidal triad made the ternary [Ru(bpy)(3)](2+)/PTA/PSS solution much more redox active. Consequently, the rate of electrodeposition of WO(3) from PTA increased appreciably by the formation of the colloidal triad, and fast electrodeposition is required for the unique preparation of this hybrid film. The absorption spectrum of the [Ru(bpy)(3)](2+) ion in the film was close to its spectrum in water, but the photoexcited state of the [Ru(bpy)(3)](2+) ion was found to be quenched completely by the presence of WO(3) in the hybrid film. The cyclic voltammogram (CV) of the hybrid film suggested that the [Ru(bpy)(3)](2+) ion performs as it is adsorbed onto WO(3) during the electrochemical oxidation. An ohmic contact between the [Ru(bpy)(3)](2+) ion and the WO(3) surface could allow the electrochemical reaction of adsorbed [Ru(bpy)(3)](2+). The composition of the hybrid film, analyzed by electron probe microanalysis (EPMA), suggested that the positive charge of the [Ru(bpy)(3)](2+) ion could be neutralized by partially reduced WO(3)(-) ions, in addition to Cl(-) and PSS units, based on the charge balance in the film. The electrostatic interaction between the WO(3)(-) ion and the [Ru(bpy)(3)](2+) ion might be responsible for forming the electron transfer channel that causes the complete quenching of the photoexcited [Ru(bpy)(3)](2+) ion, as well as the formation of the ohmic contact between the [Ru(bpy)(3)](2+) ion and WO(3). A multicolor electrochromic performance of the WO(3)/[Ru(bpy)(3)](2+)/PSS hybrid film was observed, in which transmittances at 459 and 800 nm could be changed, either individually or at once, by the selection of a potential switch. Fast responses, of within a few seconds, to these potential switches were exhibited by the electrochromic hybrid film.  相似文献   

19.
Photochemically generated long-lived charge separation is the key step in processes that aim for conversion of solar energy into chemical energy. In this study, we focus on a Ru polypyridyl complex [(bpy)(2)Ru(II)L, bpy = bipyridine, L = 1,2-bis[4-(4(')-2,2(')-bipyridyl) ethene] encapsulated on the surface of a pinhole-free zeolite membrane by quaternization of L and surrounded with intrazeolitic bipyridinium ions (N,N'-trimethyl-2,2'-bipyridinium ion, 3DQ(2+)). Visible-light irradiation of the Ru complex side of the membrane in the presence of a sacrificial electron donor led to formation of PVS(-*) on the other side. Pore-blocking disilazane-based chemistry allows for Na(+) to migrate through the membrane to maintain charge balance, while keeping the 3DQ(2+) entrapped in the zeolite. These results provide encouragement that the zeolite membrane based architecture has the necessary features for not only incorporating molecular assemblies with long-lived charge separation but also for ready exploitation of the spatially separated charges to store visible light energy in chemical species.  相似文献   

20.
The first direct ion exchange of a luminescent metal complex into an alpha-zirconium phosphate framework has been accomplished. A hydrated form of alpha-ZrP, with an expanded 10.3 A interlayer distance, has been used for the intercalation of Ru(bpy)(3)(2+), resulting in further expansion to 15.2 A. The Ru(bpy)(3)(2+) luminescence band is slightly blue-shifted. High Ru(bpy)(3)(2+) loadings lead to luminescence self-quenching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号