首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 54 毫秒
1.
Blends of natural rubber/virgin ethylene-propylene-diene-monomer (NR/EPDM) and natural rubber/recycled ethylene-propylene-diene-monomer (NR/R-EPDM) were prepared. A fixed amount of carbon black (30 phr) was also incorporated. The effect of the blend ratio (90/10, 80/20, 70/30, 60/40 and 50/50 (phr/phr)) on the compounding, mechanical and morphological properties of carbon-black-filled NR/EPDM and NR/R-EPDM blends was studied. The results indicated that both the carbon-black-filled NR/EPDM and NR/R-EPDM blends exhibited a decrease in tensile strength and elongation at break for increasing weight ratio of EPDM or R-EPDM. The maximum torque (S′MH), minimum torque (S′ML), torque difference (S′MH?ML), scorch time (ts2) and cure time (tc90) of carbon-black-filled NR/EPDM or NR/R-EPDM blends increased with increasing weight ratio of virgin EPDM or R-EPDM in the blend. SEM micrographs proved that, for low weight ratios of virgin EPDM or R-EPDM, the blends exhibited high surface roughness and matrix tearing lines. The blends also showed a reduction in crack path with increasing virgin EPDM or R-EPDM content over 30 phr. This reduction in crack path could lead to less resistance to crack propagation and, therefore, low tensile strength.  相似文献   

2.
The thermal effect of mixing of EPDM and IIR was studied by differential scanning calorimetry over the temperature range between 335 and 435 K. O'Neill's method was used for calculating the specific heat capacity with alumina as standard. The greater the butyl rubber content, the lower the heat capacity. The presence of butyl rubber induces a marked thermal instability because of isobutylene units. It is possible that a rearrangement occurs in the molecular sequence, accompanied by secondary reactions involving free radicals. The contribution of each component to the cP of the tested polymeric systems is discussed. Differences between theoretical and experimental specific heat capacities increase as the operation temperature is raised. The relationship between the contributions of the two components to the specific heat capacity values of mixtures can be described by a first order equation, named the law of reciprocal thermal affinity. This aspect can be ascribed to the interaction of various reacting entities, which form certain units with low molar heat capacity. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
The thermal behaviour of natural rubber/acrylonitrile butadiene rubber (NR/NBR) was studied using thermogravimetry (TG) and differential scanning calorimetry (DSC) in terms of blend ratio, crosslinking systems, fillers and compatibilizer (neoprene) were analyzed. The presence of NBR markedly increases the thermal stability of their blends and it lies in between NR and NBR. DSC studies revealed the thermodynamic immiscibility of the NR/NBR blends by the presence of two distinct glass transition temperatures and the immiscibility was prominent even in the presence of a compatibilizer.  相似文献   

4.
Incorporation of approximately 30 phr Ethylene-Propylene-Diene rubber (EPDM) into natural rubber (NR)/butadiene rubber (BR) is a means to achieve non-staining ozone resistance for tire sidewall applications. However, due to incompatibility of the elastomers and heterogeneous filler distribution in each of the rubber phases, the mechanical properties deteriorate. In the present work, maleic-anhydride modified EPM (MAH-EPM) is added as a compatibilising agent between NR/BR and EPDM. The addition of 5 phr of MAH-EPM results in significantly improved tensile and tear strength when compared to a straight NR/BR/EPDM blend. These improvements can mainly be attributed to a compatibilising effect of MAH-EPM, resulting in a more homogeneous phase distribution, but in particular a much better homogeneous carbon black distribution over the different rubber phases. In addition, ionic crosslinks are introduced into the blends by interaction of MAH-EPM with zinc oxide.  相似文献   

5.
The vulcanization characteristics of natural rubber (NR)/ethylene-propylene-ethylidenenorbornene (EPDM) rubber blends were studied in the presence of thioacetate-(EPDMTA) or mercapto-modified EPDM (EPDMSH), using oscillating disk rheometer. The effect of both functionalized EPDMs was investigated in unaccelerated-sulfur curing system and accelerated-sulfur curing systems containing 0.4 and 0.8 phr of MBTS. Both EPDMTA and EPDMSH act as accelerator agent in the curing process, as indicated by the higher values of cure rate index and lower values of activation energy of vulcanization. A substantial increase of the crosslink density has been also observed in EPDMSH-modified blends. Both EPDMTA and EPDMSH resulted in an increase in tensile strength, but the best performance has been achieved with EPDMSH, probably because of the increase of crosslink density associated to the reactive compatibilization promoted by the reaction between mercapto groups and rubber matrix. The best ageing resistance has been observed in EPDMTA-modified blends.  相似文献   

6.
Nylon copolymer (PA6, 66) and ethylene propylene diene (EPDM) blends with and without compatibilizer were prepared by melt mixing using Brabender Plasticorder. The thermal stability of nylon copolymer (PA6, 66)/ethylene propylene diene rubber (EPDM) blends was studied using thermogravimetric analysis (TGA). The morphology of the blends was investigated using scanning electron microscopy (SEM). In this work, the effects of blend ratio and compatibilisation on thermal stability and crystallinity were investigated. The incorporation of EPDM rubber was found to improve the thermal stability of nylon copolymer. The kinetic parameters of the degradation process were also studied. A good correlation was observed between the thermal properties and phase morphology of the blends. By applying Coats and Redfern method, the activation energies of various blends were derived from the Thermogravimetric curves. The compatibilization of the blends using EPM-g-MA has increased the degradation temperature and decreased the weight loss. EPM-g-MA is an effective compatibilizer as it increases the decomposition temperature and thermal stability of the blends. Crystallinity of various systems has been studied using wide angle X-ray scattering (WAXS). The addition of EPDM decreases the crystallinity of the blend systems.  相似文献   

7.
Blends of natural rubber (NR) and styrene butadiene rubber (SBR) were prepared with sulfur and n-t-butyl-2-benzothiazole sulfonamide (TBBS) as accelerator, varying the amount of each polymer in the blend. Samples were analysed by rheometer curing at 433 K until their maximum torque was reached. The miscibility among the constituent polymers of the cured compounds was studied in a broad range of temperatures by means of differential scanning calorimetry, analyzing the glass transition temperatures of the samples. The specific heat capacity of the compounds was also determined. Thermal diffusivity of the samples was measured in the temperature range from 130 to 400 K with a new device that performs measurements in vacuum. The thermal results are explained on the basis of the structure formed during the vulcanization of the samples considering the variation of the crosslink density of each phase. Finally, a serial thermal conduction model that takes into account the contribution of each phase to the thermal diffusivity was used to fit the experimental results.  相似文献   

8.
The thermal stability of natural rubber (NR) and carboxylated styrene butadiene rubber (XSBR) latices and their blends was studied by thermogravimetric methods. Ageing characteristics of these latex blends were studied by applying hot air oven thermal ageing for seven days at 70 °C. The mechanical properties of the aged samples were studied. Thermal degradation and ageing properties of these individual latices and their blends were investigated with special reference to blend ratio and vulcanization techniques. As the XSBR content in the blends increased their thermal stability was also found to increase. Among sulphur and radiation-vulcanized samples, radiation cured possesses higher thermal stability due to the higher thermal stability of carbon-carbon crosslinks. DTG curves were used for the determination of different stages involved in the degradation. Activation energy for degradation was determined from Coats-Redfern plot. The properties of aged samples were found to decrease due to chain depletion. However, the moduli of XSBR and NR/XSBR blends were found to increase owing to the formation of crosslinks upon ageing.  相似文献   

9.
Polylactic acid (PLA) was toughened by 5–20 wt % of natural rubber (NR). Two different compatibilizers maleated PLA (PLA-g-MA) and maleated NR (NR-g-MA) were used as coupling agent. The blends were prepared using twin screw extruder at varying levels of NR. Mechanical, thermal and morphological analyses were carried out to study the effect of compatibilizer on PLA/NR blends compatibility.  相似文献   

10.
Silica particles were generated and grown in situ by sol–gel method into rubber blends comprised of natural rubber (NR) and acrylonitrile butadiene rubber (NBR) at various blend ratios. Silica formed into rubber matrix was amorphous in nature. Amount of in situ silica increased with increase in natural rubber proportion in the blends during the sol–gel process. Morphology studies showed that the generated in situ silica were nanoparticles of different shapes and sizes mostly grown into the NR phase of the blends. In situ silica filled NR/NBR blend composites showed improvement in the mechanical and dynamic mechanical behaviors in comparison to those of the unfilled and externally filled NR/NBR blend composites. For the NR/NBR blend at 40/60 composition, in particular, the improvement was appreciable where size and dispersion of the silica particles into the rubber matrix were found to be more uniform. Dynamic mechanical analysis revealed a strong rubber–in situ silica interaction as indicated by a positive shift of the glass transition temperature of both the rubber phases in the blends.  相似文献   

11.
This article deals with blends based on natural rubber (NR) and recycled ethylene-propylene-diene rubber (R-EPDM). Natural rubber latex (NRL) was introduced into the blends to enhance interfacial adhesion between NR and R-EPDM. A new route of compounding was also suggested. The blends were prepared by mixing R-EPDM and other additives in NRL before blending with natural rubber on a two-roll mill. By applying this method, the homogeneity of the blends and cross-linking distribution are significantly improved. The blends exhibited superior state of cure, swelling resistance, mechanical properties and dynamic mechanical properties. The degree of entanglement between NR and R-EPDM also increased after NRL modification.  相似文献   

12.
The present paper reports the results about a study of mechanical, thermal, dynamic mechanical and electrical properties of housing (weather shed) materials for outdoor polymeric insulators. Silicone rubber, ethylene-propylene-diene monomer (EPDM) and alloys of silicon-EPDM are known polymers for use as housing in high voltage insulators. The result of dynamical mechanical measurement shows that the storage modulus of blends enhances with increase EPDM in formulation. It can be seen from the result of TGA measurement that initial thermal degradation of silicone rubber improves by the effect of EPDM in blends. The blends of silicone-EPDM show good breakdown voltage strength compared to silicone rubber. Surface and volume resistance of silicone rubber improve by EPDM content. The mechanical properties of EPDM such as strength, modulus and elongation at break improve by silicone.  相似文献   

13.
In the present study, recycled ethylene-propylene-diene rubber (R-EPDM) was used in an attempt to create a value-added natural rubber (NR) material based on NR/R-EPDM blends. ZnO nanoparticles were also incorporated in a way to replace the conventional ZnO together with special attention to improve the thermo-mechanical performance of the blends. Polyhedral and spherical shapes of ZnO nanoparticles were synthesized, and they were found to have no impurities, with a dimension ranging from 10 to 40 nm. ZnO nanoparticles not only act as a curing activator but also improve the thermal stability and dynamic mechanical properties of the blends.  相似文献   

14.
This work analyses the rheological behaviour of thermoplastic elastomeric blends (TPE) based on ground tyre rubber (GTR), more specifically the rheological behaviour of binary and ternary polypropylene (PP) based blends with different rubber materials: an ethylene propylene diene monomer (EPDM), an ethylene propylene rubber (EPR) and GTR. The study was developed under steady-shear rate conditions by capillary rheometry at three different temperatures. Time–Temperature Superposition Principle (TTSP) was applied to the viscosity curves using a temperature dependent shift factor, allowing the construction of master curves for the analysed blends. The Cross-WLF model was used to predict the rheological parameters, giving numerical results for viscosity similar to the experimental data. GTR increased the blends viscosity. EPR showed rheological behaviour similar to PP, and EPDM presented higher power law behaviour. Pseudoplastic behaviour was observed for all the analysed blends. Incorporation of GTR in TPE blends for injection moulding purposes was found to be a feasible strategy to upcycle this type of potentially wasted material.  相似文献   

15.
The loading effect of precipitated silica (PSi) and fly ash‐based silica (FASi) on mechanical properties of natural rubber/chloroprene (NR/CR) under thermal and thermal‐oil ageing was investigated with variation in NR content in the NR/CR blends. The selected results were compared with vulcanized NR/nitrile rubber (NR/NBR) blends. The cure time of CR vulcanizate was found to decrease with increasing NR content, but increased with silica fillers. The Mooney viscosity for CR vulcanizates reduced with increasing NR content. The addition of NR had no effect on tensile modulus and tensile strength for the FASi filled NR/CR, but the opposite trend was observed for the PSi filled NR/CR. The post‐curing effect was more significant in PSi filled NR/CR than in FASi filled NR/CR. The tensile strength of the NR/CR vulcanizates was slightly reduced after thermal ageing especially at high NR content, more extreme reduction being found by thermal‐oil ageing. The elongation at break of NR/CR with both silica fillers ranged from 400 to 900%. The hardness results were similar to the tensile modulus. The addition of PSi in NR/CR considerably increased the tear strength, but less pronounced effect was found for FASi. The resilience properties of NR/CR tended to decrease with increasing silica content. The compression set became poorer when NR content was increased. The PSi showed higher improvement in compression set than the FASi. The effects of silica and ageing on the mechanical properties for NR/CR vulcanizates were similar to those for NR/NBR vulcanizates. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Natural rubber/styrene-butadiene rubber (NR/SBR) blends, with and without silica, were prepared by co-coagulating the mixture of rubber latices and various amounts of well-dispersed silica suspension. An attempt to predict blend compositions was made using Raman spectroscopy in association with differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). It was found that the intensity of each Raman characteristic peak was strongly dependent on the blend composition, but there was no significant evolution with the presence of silica. Also, TGA results revealed an improvement in thermal stability of NR/SBR blends with increasing both SBR and silica contents due to the dilution effect. Two distinct glass transition temperatures (Tg) were observed in DSC thermograms of all blends, and their Tg values were independent on both blend composition and silica content. This indicated a physical blend formation, which agreed well with no shifts in Raman peaks of the blends in comparison with those of the individual rubbers. Linear regression with R2 quality factor close to 0.99 was achieved when plotting intensity ratio at 1371/1302 cm?1 versus blend ratios. On the other hand, the peak height ratio and heat capacity ratio from TGA and DSC analysis, respectively, yielded quadratic equations as a function of blend ratios.  相似文献   

17.
Rubber blends are widely used for combining the advantages of individual rubber component. However, to date, how to determine and distinguish the vulcanization kinetics for each single rubber phase in rubber blends during the co-vulcanization process are still a challenge. Herein, high resolution pyrolysis gas chromatography-mass spectrometry (PyGC-MS) was employed for the first time to investigate the vulcanization kinetics of natural rubber (NR) and styrene-butadiene rubber (SBR) in their blends filled with graphene. It is shown that the crosslinking rate of NR chains (kNR) was much lower than that of SBR chains (kSBR) in the unfilled blends and blends with untreated graphene. Interestingly, the gap between kSBR and kNR was narrowed effectively in the blends with vulcanization accelerator grafted graphene, showing a better co-vulcanization of NR and SBR. In addition, the vulcanization accelerator grafted graphene was uniformly dispersed in rubber matrix and endowed rubber blends with higher mechanical strength and thermal conductivity did the untreated graphene.  相似文献   

18.
Green biodegradable thermoplastic natural rubber (GB‐TPNR) based on simple blend of natural rubber (NR) and poly(butylene succinate) (PBS) was prepared using three NR alternatives: unmodified NR and epoxidized NR with 25‐ or 50‐mol% epoxide (ie, ENR‐25 or ENR‐50). It was found that ENR‐50/PBS blend showed the best compatibility, which resulted in superior mechanical and thermal properties with the highest crystallinity of the PBS phase, on comparing with the ENR‐25/PBS and NR/PBS blends. This might be attributed to stronger chemical interactions between the epoxide groups in ENR‐50 and the polar functional groups in PBS, which were confirmed by Fourier transform infrared (FTIR). Furthermore, scanning electron microscopy (SEM), atomic force microscopy (AFM), and polarizing optical microscopy (POM) micrographs of ENR‐50/PBS blend revealed phase separation with finer‐grained cocontinuous structure than in ENR‐25/PBS and NR/PBS simple blends. Furthermore, the chemical interactions in ENR‐50/PBS blend enhanced the resistance to accelerated weathering.  相似文献   

19.
Thermoplastic elastomer (TPE) comprising air‐dried sheet or natural rubber (ADS or NR) and high‐density polyethylene (HDPE) was prepared by a simple blending technique. NR and HDPE were mixed with each type of phenolic compatibilizer (HRJ‐10518 or SP‐1045) or liquid natural rubber (LNR) at 180°C in an internal mixer. The mixing torque, shear stress, and shear viscosity of the blends increased with increasing amounts of NR. Positive deviation blend (PDB) for the blends containing active hydroxyl methyl phenolic resin in HRJ‐10518 or dimethyl phenolic resin in SP‐1045 was obtained. PDB was not observed for the blends without the compatibilizers or with LNR. The blends with HRJ‐10518 or SP‐1045 were compatible or partially compatible while the LNR blends were incompatible. In the phenolic compatibilized blends, NR dispersed in the HDPE matrix was found in the NR/HDPE blends of 20/80, 40/60, and 50/50 ratios. HDPE dispersed in NR matrix was obtained in the NR/HDPE blend of 80/20 ratio, and the co‐continuous phase was accomplished in the NR/HDPE blend of 60/40 ratio. The NR/HDPE blend at 60/40 ratio compatibilized with HRJ‐10518 and fabricated by a simple plastic injection molding machine exhibited higher ultimate tensile strength and elongation at break (EB). Incorporation of parafinic oil caused a decreasing tendency in tensile strength with increases in EB. The TPNRs exhibited high elastomeric nature with low‐tension set. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
The reactive compatibilization of ethylene-propylene-diene (EPDM)-based dissimilar elastomer blends has been investigated in terms of mechanical properties and swelling degree. The use of mercapto-functionalized copolymers resulted in an improvement of mechanical properties of natural rubber-EPDM blends. The mercapto-groups are able to react with the carbon-carbon double bonds of the high diene rubber, resulting in a good interaction between phases. These interactions were confirmed by the amount of insoluble material obtained in non-vulcanized blends. From dynamic mechanical properties and swelling degree, one can suggest a covulcanization process in these blends cured with sulfur-based system. Blends composed by nitrile rubber with EPDM displayed good results in terms of mechanical properties when mercapto-functionalized EVA was employed instead of functionalized EPDM, probably because of the higher polarity of the former associated to its lower viscosity. Additionally, an improvement on mechanical properties was also achieved by using EPDM functionalized with mercapto or anhydride groups in combination with nitrile rubber functionalized with epoxy or oxazoline groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号