首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The N-N bond activation of the dinitrogen ligand in the cubane-type mixed-metal sulfido cluster, [(Cp*Ir) 3{Ru(tmeda)(N 2)}(mu 3-S) 4] (tmeda = Me 2NCH 2CH 2NMe 2), is investigated by using DFT calculations at the B3LYP level of theory. The elongated N-N bond distance, red-shifted N-N stretching, and negatively charged N 2 ligand indicate that the dinitrogen is reductively activated by complexation. The degree of the N-N bond activation is classified into the "moderately activated" category, [ Studt, F. ; Tuczek, F. J. Comput. Chem. 2006, 27, 1278 ] as in the Mo-triamidoamine complex that can catalyze N 2 reduction [ Yandulov, D. V. ; Schrock, R. R. Science 2003, 301, 76 ]. Availability of the RuIr 3S 4 cluster as a catalyst for N 2 reduction is discussed by optimizing possible intermediates in a catalytic cycle analogous to that proposed by Yandulov and Schrock. A calculated energy profile of the catalytic cycle demonstrates that the RuIr 3S 4 cluster can transform dinitrogen into ammonia in the presence of lutidinium cation and Cp* 2Co as proton and electron sources, respectively. The RuIr 3S 4 clusters with an NNH x ( x = 1-3) ligand, which are intermediates in the catalytic cycle, have a significantly bent Ru-N-N linkage, although precedent NNH x complexes generally adopt a linear M-N-N array. The unique structures of the nitrogenous ligands in these intermediates are interpreted in terms of the bonding interaction between the hydrogen atom bonded to the N 2 ligand and the adjacent iridium atom in the cuboidal RuIr 3S 4 framework.  相似文献   

2.
Complete donor-induced alkylaluminate cleavage of halfmetallocene complex Cp*Y(AlMe4)2, that is, treatment of Cp*Y(AlMe4)2 with 2 equiv of diethyl ether, produces [Cp*Y(mu2-Me)2]3 in high yield (95%). In contrast, the equimolar reaction of Cp*Y(AlMe4)2 with diethyl ether reproducibly formed complex [Cp*4Y4(mu2-CH3)2{(CH3)Al(mu2-CH3)2}4(mu4-CH)2] in low yield (10-30%) via a multiple C-H bond activation. The synthesis of the heterooctametallic yttrium-aluminum-methine cluster was also accomplished in moderate yield (47%) by the equimolar reaction of discrete Cp*Y(AlMe4)2 and [Cp*Y(mu2-Me)2]3 in the absence of any donor solvent and "free" AlMe3. This gives strong evidence that preformed heterometal-bridged Y-CH3-Al moieties are prone to multiple hydrogen abstraction in the presence of a highly basic reagent such as [Cp*Y(mu2-Me)2]3. The monocylopentadienyl complexes [Cp*Y(mu2-Me)2]3 and [Cp*4Y4(mu2-CH3)2{(CH3)Al(mu2-CH3)2}4(mu4-CH)2] were structurally characterized.  相似文献   

3.
The new hydride complexes [Mo2Cp2(mu-H)(mu-PHR)(CO)4] having bulky substituents (R = 2,4,6-C(6)H2tBu3= Mes*, R = 2,4,6-C6H2Me3= Mes) have been prepared in good yield by addition of Li[PHR] to the triply bonded [Mo2Cp2(CO)4] and further protonation of the resulting anionic phosphide complex [Mo2Cp2(mu-PHR)(CO)4]-. Protonation of the Mes* compound with either [H(OEt2)2][B{3,5-C6H3(CF3)2}4] or HBF4.OEt2 gives the cationic phosphinidene complex [Mo2Cp2(mu-H)(mu-PMes*)(CO)4]+ in high yield. In contrast, protonation of the analogous hydride compounds with Mes or Cy substituents on phosphorus give the corresponding unsaturated tetracarbonyls [Mo2Cp2(mu-PHR)(CO)4]+, which are unstable at room temperature and display a cis geometry. Decomposition of the latter give the electron-precise pentacarbonyls [Mo2Cp2(mu-PHR)(mu-CO)(CO)4]+, also displaying a cis arrangement of the metal fragments. In the presence of BF4- as external anion, fluoride abstraction competes with carbonylation to yield the neutral fluorophosphide hydrides [Mo2Cp2(mu-H)(mu-PFR)(CO)4]. Similar results were obtained in the protonation reactions of the hydride compounds having a Ph substituent on phosphorus. In that case, using HCl as protonation reagent gave the chloro-complex [Mo2ClCp2(mu-PHPh)(CO)4] in good yield. The structures and dynamic behaviour of the new compounds are analyzed on the basis of solution IR and 1H, 31P, 19F and 13C NMR data as well as the X-ray studies carried out on [Mo2Cp2(mu-H)(mu-PHMes)(CO)4](cis isomer), [Mo2Cp2(mu-H)(mu-PFMes)(CO)4](trans isomer), [Mo2Cp2(mu-PHCy)(mu-CO)(CO)4](BF4) and [Mo2ClCp2(mu-PHPh)(CO)4].  相似文献   

4.
The unsaturated complexes [W2Cp2(mu-PR2)(mu-PR'2)(CO)2] (Cp = eta5-C5H5; R = R' = Ph, Et; R = Et, R' = Ph) react with HBF4.OEt2 at 243 K in dichloromethane solution to give the corresponding complexes [W2Cp2(H)(mu-PR2)(mu-PR'2)(CO)2]BF4, which contain a terminal hydride ligand. The latter rearrange at room temperature to give [W2Cp2(mu-H)(mu-PR2)(mu-PR'2)(CO)2]BF4, which display a bridging hydride and carbonyl ligands arranged parallel to each other (W-W = 2.7589(8) A when R = R' = Ph). This explains why the removal of a proton from the latter gives first the unstable isomer cis-[W2Cp2(mu-PPh2)2(CO)2]. The molybdenum complex [Mo2Cp2(mu-PPh2)2(CO)2] behaves similarly, and thus the thermally unstable new complexes [Mo2Cp2(H)(mu-PPh2)2(CO)2]BF4 and cis-[Mo2Cp2(mu-PPh2)2(CO)2] could be characterized. In contrast, related dimolybdenum complexes having electron-rich phosphide ligands behave differently. Thus, the complexes [Mo2Cp2(mu-PR2)2(CO)2] (R = Cy, Et) react with HBF4.OEt2 to give first the agostic type phosphine-bridged complexes [Mo2Cp2(mu-PR2)(mu-kappa2-HPR2)(CO)2]BF4 (Mo-Mo = 2.748(4) A for R = Cy). These complexes experience intramolecular exchange of the agostic H atom between the two inequivalent P positions and at room-temperature reach a proton-catalyzed equilibrium with their hydride-bridged tautomers [ratio agostic/hydride = 10 (R = Cy), 30 (R = Et)]. The mixed-phosphide complex [Mo2Cp2(mu-PCy2)(mu-PPh2)(CO)2] behaves similarly, except that protonation now occurs specifically at the dicyclohexylphosphide ligand [ratio agostic/hydride = 0.5]. The reaction of the agostic complex [Mo2Cp2(mu-PCy2)(mu-kappa2-HPCy2)(CO)2]BF4 with CN(t)Bu gave mono- or disubstituted hydride derivatives [Mo2Cp2(mu-H)(mu-PCy2)2(CO)2-x(CNtBu)x]BF4 (Mo-Mo = 2.7901(7) A for x = 1). The photochemical removal of a CO ligand from the agostic complex also gives a hydride derivative, the triply bonded complex [Mo2Cp2(H)(mu-PCy2)2(CO)]BF4 (Mo-Mo = 2.537(2) A). Protonation of [Mo2Cp2(mu-PCy2)2(mu-CO)] gives the hydroxycarbyne derivative [Mo2Cp2(mu-COH)(mu-PCy2)2]BF4, which does not transform into its hydride isomer.  相似文献   

5.
Treatment of [Cp*Mo(NO)Cl(mu-Cl)](2) with magnesium (Me(2)Mg.dioxane, MeMgCl) or aluminum (Me(3)Al) methylating reagents affords the known compound [Cp*Mo(NO)Me(mu-Cl)](2) (1). Similar treatment of the dichloro precursor with MeLi in ethereal solvents generates an equimolar mixture of 1 and the trimethyl "ate" complex, Cp*MoMe(3)(NO-Li(OEt(2)(n)), (2-Et(2)O). Reaction of 2-Et(2)O with a source of [Me](+) forms Cp*MoMe(3)(=N-OMe)(3), a rare terminal alkoxylimido complex. Metathesis of the chloro ligands of [Cp*Mo(NO)Cl(mu-Cl)](2) by MeLi in toluene at low temperatures produces the target dimethyl complex, Cp*Mo(NO)Me(2) (4), in 75% isolated yield. In solution, 4 is predominantly a monomeric species, whereas in the solid state it adopts a dimeric or oligomeric structure containing isonitrosyl bridges as indicated by IR and (15)N/(13)C NMR spectroscopies. Hydrolysis of 4 affords meso- and rac-[Cp*Mo(NO)Me](2)(mu-O) (5), and the reactions of 4 with a range of Lewis bases, L, to form the 18e adducts Cp*Mo(NO)(L)Me(2) (e.g., Cp*Mo(NO)(PMe(3))Me(2) (7)), have established it to be the most electrophilic complex of its family. Acidolysis of the methyl groups of 4 is also facile. Most notably, 4 is thermally unstable in solution and undergoes isomerization via nitrosyl N-O bond cleavage to its oxo(imido) form, Cp*Mo(NMe)(O)Me (11), which is isolable from the final reaction mixture as the mu-oxo-bridged adduct formed by 4 and 11, i.e., Cp*Mo(NO)Me(2)(mu-O)Cp*Mo(NMe)Me (4 <-- 11). The rate of this isomerization is significantly faster for the tungsten dimethyl complex; hence, Cp*W(NO)Me(2) (12) is not isolable free of a supporting donor interaction and can only be isolated as Cp*W(NO)Me(2)(mu-O)Cp*W(NMe)Me (12 <-- 13) or Cp*W(NO)Me(2)(PMe(3)) (14) adducts.  相似文献   

6.
The thermally stable, terminal phosphinidene complexes [CpM(CO)2(eta1-PNiPr2)]AlCl4(Cp= Cp, Cp*; M = Fe) and [Cp*M(CO)3(eta1-PNiPr2)]AlCl4 (M = Cr, Mo, W) react with Ph2C=N=N to form terminal P-coordinated eta1-phosphaazine and eta3-diazaphosphaallene ligands, respectively, whereas [CpFe(CO)2(eta1-PNiPr2)]AlCl4 reacts with Me3SiCHN2 affording a terminal phosphorus bound eta1-phosphaalkene complex.  相似文献   

7.
The use of the phosphine PPh2py instead of PPh3 in complexes of the type [Cp*RuH(P)2] enormously alters the kinetic control of the proton-transfer reactions over this compound and its chemical behavior. The reaction at low temperature of [Cp*RuH(PPh2py)2], 2, with HBF4 gives as products the classical dihydride trans-[Cp*RuH2(PPh2py)2](BF4), 3 (1 equiv of HBF4) or the dihydrogen-bonded complex [Cp*RuHH(PPh2pyH)(PPh2py)](BF4)2, 4 (2 equiv of HBF4). These complexes exhibit very accessible intramolecular processes of proton transfer, and finally, a slow release of H2 takes place at room temperature. Derivatives 2 and 3 are active catalysts for the deuterium labeling of H2 using methanol-d4 as an isotopic source. This demonstrates that the release of hydrogen is reversible, that the heterolytic activation of H2 is an easy process, and that acid species participate in the intramolecular proton-transfer processes. These observations are supported by reaction-coordinate calculations at the DFT/B3LYP level that show the existence of a low-energy reaction path that easily transforms the classical trans dihydride complex into the nonclassical cis dihydrogen compound in a reversible way, through the involvement of hydrogen- and dihydrogen-bonded intermediates and the essential participation of the pyridine centers. The different energy minima of this reaction profile are very accessible through low-energy transition states, all of which have been located.  相似文献   

8.
Protonation of [Mo2Cp2(mu-H)(mu-PHR*)(CO)4] (Cp = eta5-C5H5, R* = 2,4,6-C6H2tBu3) with HBF4.OEt2 gives the hydridophosphinidene complex [Mo2Cp2(mu-H)(mu-PR*)(CO)4]BF4, which is easily deprotonated with H2O to give the known phosphinidene complex [Mo2Cp2(mu-PR*)(CO)4] in 95% yield. Reaction of the latter with I2 gives the unsaturated phosphinidene complex [Mo2Cp2I2(mu-PR*)(CO)2], which exhibits an intermetallic distance of 2.960(2) A. Irradiation of solutions of [Mo2Cp2(mu-PR*)(CO)4] with UV light gives a mixture of the triply bonded [Mo2Cp2(mu-PR*)(mu-CO)2] and the hydridophosphido derivative [Mo2Cp2(mu-H){mu-P(CH2CMe2)C6H2tBu2}(CO)4] as major species. The latter complex results from an intramolecular C-H bond cleavage from a tBu group and has been characterized by spectroscopy and an X-ray study. Irradiation in the presence of HCC(p-tol) results in the insertion of the alkyne into the Mo-P bond to give [Mo2Cp2{mu-eta1:eta2,kappa-C(p-tol)CHPR*}(CO)4] structurally characterized through an X-ray study.  相似文献   

9.
Reaction of [Mo2Cp2(mu-H)(mu-PHR*)(CO)4] with DBU followed by O2 gives the first anionic phosphinidene oxide complex (H-DBU)[MoCp{P(O)R*}(CO)2] (1) (DBU = 1,8-diazabicyclo [5.4.0] undec-7-ene; R* = 2,4,6-C6H2tBu3). This anion displays three different nucleophilic sites located at the O, P, and Mo atoms, as illustrated by the reactions reported. Thus, reaction of 1 with excess HBF4.OEt2 gave the fluorophosphide complex [MoCp(PFR*)(CO)2] via the hidroxophosphide intermediate [MoCp{PR*(OH)}(CO)2]. Related alkoxyphosphide compounds [MoCp{P(OR)R*}(CO)2] (R = Me, C(O)Ph) were prepared by reaction of 1 with [Me3O]BF4 and PhC(O)Cl, respectively, whereas reaction of 1 with MeI or C3H5Br gave the P,O-bound phosphinite complexes [MoCp(kappa2-OPRR*)(CO)2] (R = Me, C3H5). Metal-based electrophiles were found to bind at either O or Mo positions. Thus, reaction of 1 with [ZrCl2Cp2] gave the phosphinidene oxide bridged [MoCp{P(OZrClCp2)R*}(CO)2], whereas reaction with SnPh3Cl gave trans-[MoCp{P(O)R*}(CO)2(SnPh3)], an heterometallic complex having an intact terminal P(O)R* ligand.  相似文献   

10.
The hydrogen-bonding and proton-transfer pathway to complex [Cp*W(dppe)H(3)] (Cp*=eta(5)-C(5)Me(5); dppe=Ph(2)PCH(2)CH(2)PPh(2)) was investigated experimentally by IR, NMR, UV/Vis spectroscopy in the presence of fluorinated alcohols, p-nitrophenol, and HBF(4), and by using DFT calculations for the [CpW(dhpe)H(3)] model (Cp=eta(5)-C(5)H(5); dhpe=H(2)PCH(2)CH(2)PH(2)) and for the real system. A study of the interaction with weak acids (CH(2)FCH(2)OH, CF(3)CH(2)OH, (CF(3))(2)CHOH) allowed the determination of the basicity factor, E(j)=1.73+/-0.01, making this compound the most basic hydride complex reported to date. A computational investigation revealed several minima for the [CpW(dhpe)H(3)] adducts with CF(3)CH(2)OH, (CF(3))(2)CHOH, and 2(CF(3))(2)CHOH and confirms that these interactions are stronger than those established by the Mo analogue. Their geometries and relative energies are closely related to those of the homologous Mo systems, with the most stable adducts corresponding to H bonding with M-H sites, however, the geometric and electronic parameters reveal that the metal center plays a greater role in the tungsten systems. Proton-transfer equilibria are observed with the weaker proton donors, the proton-transfer step for the system [Cp*W(dppe)H(3)]/HOCH(CF(3))(2) in toluene having DeltaH=(-3.9+/-0.3) kcal mol(-1) and DeltaS=(-17+/-2) cal mol(-1) K(-1). The thermodynamic stability of the proton-transfer product is greater for W than for Mo. Contrary to the Mo system, the protonation of the [Cp*W(dppe)H(3)] appears to involve a direct proton transfer to the metal center without a nonclassical intermediate, although assistance is provided by a hydride ligand in the transition state.  相似文献   

11.
A new synthetic pathway to Chatt-type Mo(0) and W(0) bis(dinitrogen) complexes with the ligand prP(4) is presented (prP(4) is a linear tetraphos ligand with two ethylene bridges and a central propylene bridge). The synthesis starts from MoCl(5) and WCl(6), respectively, employing Mg as reductant. Whereas the electrochemical reduction of the oxido-iodido-molybdenum(IV) complex [Mo(O)I(meso-prP(4)](+) (1) only gave trans-[Mo(N(2))(2)(meso-prP(4))] (2a; R?mer et al., Eur. J. Inorg. Chem.2008, 3258), the direct synthesis under normal conditions affords both trans and cis complexes 2a and 2b. The reaction products are characterised by vibrational and NMR spectroscopy. Moreover, a single-crystal X-ray structure determination of cis-α-[Mo(N(2))(2)(rac-prP(4))] (2b) is performed. In contrast to the trans bis(dinitrogen)molybdenum(0) complex 2a supported by the meso prP(4) ligand the corresponding cis-complex is exclusively coordinated by the rac isomer of prP(4). The reactivity of 2 with acids is investigated as well, leading to the NNH(2) complex [MoF(NNH(2))(meso-prP(4))]BF(4) (15). Analogous results are obtained with the tungsten complexes.  相似文献   

12.
The reaction of Cp*2V with 7-sila(germa) norbornadiene derivatives generated the first representatives of Schrock complexes of heavy carbene analogs with transition metals. Decamethylvanadocene Cp*2V can be used as a paramagnetic trap for short-lived dimethylgermylene.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 792–795, March, 2005.  相似文献   

13.
A general photochemical activation process of inert dinitrogen coordinated to two metal centers is presented on the basis of high-level DFT and ab initio calculations. The central feature of this activation process is the occupation of an antibonding pi* orbital upon electronic excitation from the singlet ground state S0 to the first excited singlet state S1. Populating the antibonding LUMO weakens the triple bond of dinitrogen. After a vertical excitation, the excited complex may structurally relax in the S1 state and approaches its minimum structure in the S1 state. This excited-state minimum structure features the dinitrogen bound in a diazenoid form, which exhibits a double bond and two lone pairs localized at the two nitrogen atoms, ready to be protonated. Reduction and de-excitation then yield the corresponding diazene complex; its generation represents the essential step in a nitrogen fixation and reduction protocol. The consecutive process of excitation, protonation, and reduction may be rearranged in any experimentally appropriate order. The protons needed for the reaction from dinitrogen to diazene can be provided by the ligand sphere of the complexes, which contains sulfur atoms acting as proton acceptors. These protonated thiolate functionalities bring protons close to the dinitrogen moiety. Because protonation does not change the pi*-antibonding character of the LUMO, the universal and well-directed character of the photochemical activation process makes it possible to protonate the dinitrogen complex before it is irradiated. The pi*-antibonding LUMO plays the central role in the activation process, since the diazenoid structure was obtained by excitation from various occupied orbitals as well as by a direct two-electron reduction (without photochemical activation) of the complex; that is, the important bending of N2 towards a diazenoid conformation can be achieved by populating the pi*-antibonding LUMO.  相似文献   

14.
2-pyridinethione (2-mercaptopyridine, H-2mp) undergoes rapid oxidative addition with 2 mol of the 17-electron organometallic radical *Cr(CO)3Cp (where Cp*=C5Me5), yielding hydride H-Cr(CO)3Cp* and thiolate (eta1-2mp)Cr(CO)3Cp*. In a slower secondary reaction, (eta1-2mp)Cr(CO)3Cp* loses CO generating the N,S-chelate complex (eta2-2mp)Cr(CO)2Cp* for which the crystal structure is reported. The rate of 2-pyridine thione oxidative addition with *Cr(CO)3Cp* (abbreviated *Cr) in toluene best fits rate=kobs[H-2mp][*Cr]; kobs(288 K)=22 +/- 4 M(-1) s(-1); DeltaH++=4 +/- 1 kcal/mol; DeltaS++=- 40 +/- 5 cal/mol K. The rate of reaction is the same under CO or Ar, and the reaction of deuterated 2-pyridine thione (D-2mp) shows a negligible (inverse) kinetic isotope effect (kD/kH=1.06 +/- 0.10). The rate of decarbonylation of (eta1-2mp)Cr(CO)3Cp* forming (eta2-2mp)Cr(CO)2Cp* obeys simple first-order kinetics with kobs (288 K)=3.1x10(-4) s(-1), DeltaH++=23 +/- 1 kcal/mol, and DeltaS++=+ 5.0 +/- 2 cal/mol K. Reaction of 4-pyridine thione (4-mercaptopyridine, H-4mp) with *Cr(CO)3Cp* in THF and CH2Cl2 also follows second-order kinetics and is approximately 2-5 times faster than H-2mp in the same solvents. The relatively rapid nature of the thione versus thiol reactions is attributed to differences in the proposed 19-electron intermediate complexes, [*(S=C5H4N-H)Cr(CO)3Cp*] versus [*(H-S-C6H5)Cr(CO)3Cp*]. In comparison, reactions of pyridyl disulfides occur by a mechanism similar to that followed by aryl disulfides involving direct attack of the sulfur-sulfur bond by the metal radical. Calorimetric data indicate Cr-SR bond strengths for aryl and pyridyl derivatives are similar. The experimental conclusions are supported by B3LYP/6-311+G(3df,2p) calculations, which also provide additional insight into the reaction pathways open to the thione/thiol tautomers. For example, the reaction between H* radical and the 2-pyridine thione S atom yielding a thionyl radical is exothermic by approximately 30 kcal/mol. In contrast, the thiuranyl radical formed from the addition of H* to the 2-pyridine thiol S atom is predicted to be unstable, eliminating either H* or HS* without barrier.  相似文献   

15.
Reduction of Cp*(2)TaCl(2) with sodium amalgam in THF under a nitrogen atmosphere results in the formation of the novel complex (Cp*(2)TaCl)(2)(micro-N(2)). This dinuclear complex containing a micro-eta(1):eta(1) dinitrogen bridge has been characterized by NMR and X-ray crystallography. The complex possesses a C(2)-symmetric structure with each Ta bound to diastereotopic Cp* rings and chloride in addition to the micro-N(2) bridge. The Ta-N and N-N distances of 1.885(10) and 1.23(1) A, respectively, suggest modest reduction of the dinitrogen moiety. The two Cp* resonances on each Ta center remain inequivalent in solution, even up to 80 degrees C. Addition of hydrogen results in the formation of two isomers of the dihydride complex Cp*(2)TaH(2)Cl. Under parahydrogen, polarized resonances are observed for the unsymmetrical isomer with adjacent hydrides as the product of H(2) oxidative addition. The symmetric isomer of Cp*(2)TaH(2)Cl also forms, most likely by isomerization of the unsymmetrical kinetic isomer. The reactivity of (Cp*(2)TaCl)(2)(micro-N(2)) was compared to that of the related monomer, Cp*(2)TaCl(THF). The THF adduct yields the same hydrogen addition products, but the reaction is much more facile than for the nitrogen dimer, indicative of the structural integrity of the micro-N(2) complex.  相似文献   

16.
CpCr(NO)(CO)_2与Fe(C_5H_4S)_2S反应,形成氧化-还原产物CpCr(NO)(SC_5H_4)_2Fe(1)。双杂核二茂铁化合物CpM(NO)(EC_5H_4)_2Fe[M=Mo,E=S(2a),Se(2b);M=W,E=S(4a),Se(4b)]、CpMo(NO)(SC_5H_4)_2Fe(3)、Cp_2Mo(SeC_5H_4)_2Fe(6)和Cp_2W(SC_5H_4)_2Fe(7)可通过Fe(C_5H_4ELi)_2·2THF(E=S,Se)与CpM(NO)I_2(M=Mo,W)、[CpMo(NO)I_2]_2或Cp_2MCl_2(M=Mo,W)反应制得。三核杂原子二茂铁化合物[CpCr(NO)_2]_2(EC_5H_4)_2Fe[E=S(8a),Se(8b)],由Fe(C_5H_4ELi)_2·2THF(E=S,Se)与二倍摩尔量的CpCr(NO)_2I反应制备。通过AgBF_4氧化2a得到二茂铁离子型化合物[CpMo(NO)(SC_5H_4)_2Fe]~ BF_4~-(5)。采用元素分析、红外光谱、~1H和~(13)C NMR谱以及EI-MS表征了所合成的新型化合物。  相似文献   

17.
The versatile coordination behavior of the P4 butterfly complex [{Cp*Cr(CO)3}2(μ,η1:1-P4)] ( 1 ) towards Lewis acidic pentacarbonyl compounds of Cr, Mo and W is reported. The reaction of 1 with [W(CO)4(nbd)] (nbd=norbornadiene) yields the complex [{Cp*Cr(CO)3}231:1:1:1-P4){W(CO)4}] ( 2 ) in which 1 serves as a chelating P4 butterfly ligand. In contrast, reactions of 1 with [M(CO)4(nbd)] (M=Cr ( a ), Mo ( b )) result in the step-wise formation of [{Cp*Cr(CO)2}233:1:1-P4){M(CO)5}] ( 3 a,b ) and [{Cp*Cr(CO)2}2-(μ43:1:1:1-P4){M(CO)5}2] ( 4 a,b ) which contain a folded cyclo-P4 unit. Complex 4 a undergoes an unprecedented P1/P3-fragmentation yielding the cyclo-P3 complex [Cp*Cr(CO)23-P3)] ( 5 ) and the as yet unknown phosphinidene complex [Cp*Cr(CO)2{Cr(CO)5}23-P)] ( 6 ). The identity of 6 is confirmed by spectroscopic methods and by the in situ formation of [{Cp*Cr(CO)2(tBuNC)}P{Cr(CO)5}2(tBuNC)] ( 7 ). DFT calculations throw light on the bonding situation of the reported products.  相似文献   

18.
The molybdenum nitrosyl complex Cp*Mo(NO)(CH2CMe3)(C6H5) reacts at room temperature via elimination of neopentane or benzene to form the transient species Cp*Mo(NO)(=CHCMe3) and Cp*Mo(NO)(eta2-C6H4). These reactive intermediates effect the intermolecular activation of hydrocarbon C-H bonds via the reverse of the transformations by which they are generated. Thermolysis of Cp*Mo(NO)(CH2CMe3)(C6H5) in pyridine yields the adducts Cp*Mo(NO)(=CHCMe3)(NC5H5) and Cp*Mo(NO)(eta2-C6H4)(NC5H5), and the benzyne complex has been characterized by X-ray diffraction.  相似文献   

19.
Carbonyl–iridium half-sandwich compounds, Cp*Ir(CO)(EPh)2 (E=S, Se), were prepared by the photo-induced reaction of Cp*Ir(CO)2 with the diphenyl dichalcogenides, E2Ph2, and used as neutral chelating ligands in carbonylmetal complexes such as Cp*Ir(CO)(μ-EPh)2[Cr(CO)4], Cp*Ir(CO)(μ-EPh)2[Mo(CO)4] and Cp*Ir(CO)(μ-EPh)2[Fe(CO)3], respectively. A trimethylphosphane–iridium analogue, Cp*Ir(PMe3)(μ-SeMe)2[Cr(CO)4], was also obtained. The new heterodimetallic complexes were characterized by IR and NMR spectroscopy, and the molecular geometry of Cp*Ir(CO)(μ-SePh)2[Mo(CO)4] has been determined by a single crystal X-ray structure analysis. According to the long Ir…Mo distance (395.3(1) Å), direct metal–metal interactions appear to be absent.  相似文献   

20.
An organometallic complex resulting from tail-to-tail dimerization and C-H activation of methyl acrylate (MA), [Mo(CO2Cp(eta 3-(MeO2C)CH[symbol: see text]CH[symbol: see text]CHCH2(CO2Me)] 2, has been fully characterized from the reaction of the heterobimetallic complex [Cp*Ni=Mo(mu-CO)(CO)2Cp] with MA and an exclusively eta 3-allyl bonding mode of the coupled ligand was established for the first time by X-ray diffraction; formation of 2 is accompanied by that of the mu 3-alkylidyne-capped cluster [NiMo2(mu 3-CCH2CO2Me)(CO)4Cp*Cp2] 3 which results from a double C-H activation of the CH2 group of MA; none of these reactions occur with the corresponding homodinuclear complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号