首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cross-linked cellulose nanofibril (CNF) aerogel with positive and negative surface charge was prepared. For the surface charge modification of CNF from its intrinsic negative charge to positive charge, glycidyltrimethylammonium chloride was used. To stabilize the network structure of CNF aerogel in aqueous condition, maleic acid and sodium hypophosphite cross-linking treatment was applied. The ion adsorption properties of positive and negative charged cross-linked CNF aerogels were evaluated using the Langmuir adsorption model, and it was affected by pH of the ion solution. The maximum ion adsorption capacity of negatively charged cross-linked CNF aerogel was 0.79 mmol/g for the nickel cation while that of the positively charged cross-linked aerogel was 0.62 mmol/g for the permanganate anion.  相似文献   

2.
疏水性二氧化硅气凝胶吸附水中微量苯酚和甲醛的研究   总被引:2,自引:0,他引:2  
气凝胶是一种新型纳米多孔非晶材料,其密度低、比表面积大、孔隙率高,可以作为吸附剂.本文研究了稻壳灰为硅源制成的合甲基的疏水性二氧化硅气凝胶对水中微量苯酚和甲醛的吸附性能.结果表明,疏水性气凝胶对水中微量苯酚和甲醛具有一定的吸附能力,实验中对苯酚的吸附容量是1.93mg/g,要大于对甲醛的吸附容量0.92mg/g;增大气凝胶的疏水化程度可以增加其对水中微量苯酚和甲醛的平衡吸附容量;苯酚的吸附平衡等温曲线符合Langmuir和Freundlich方程,甲醛的吸附平衡等温曲线符合Freundlich方程.  相似文献   

3.
A carbon aerogel was obtained by carbonization of an organic aerogel prepared by sol-gel polymerization of resorcinol and formaldehyde in water. The carbon aerogel was then CO(2) activated at 800 degrees C to increase its surface area and widen its microporosity. Evolution of these parameters was followed by gas adsorption and small- and wide-angle X-ray scattering (SAXS and WAXS, respectively) with contrast variation by using dry and wet (immersion in benzene and m-xylene) samples. For the original carbon aerogel, the surface area, S(SAXS), obtained by SAXS, is larger than that obtained by gas adsorption (S(ads)). The values become nearly the same as the degree of activation of the carbon aerogel increases. This feature is due to the widening of the narrow microporosity in the carbon aerogel as the degree of activation is increased. In addition, WAXS results show that the short-range spatial correlations into the assemblies of hydrocarbon molecules confined inside the micropores are different from those existing in the liquid phase.  相似文献   

4.
CuO/ZrO2超细粒子催化剂的制备和物性结构表征Ⅱ.煅烧温度的影响师江柳刘金尧朱起明(清华大学化学系一碳化工国家重点实验室,北京100084)张鎏张继炎(天津大学化工系,天津300072)关键词氧化铜,氧化锆,超临界流体干燥,超细粒子,煅烧,物性结...  相似文献   

5.
The aim of this study is to analyze the use of Ag-doped activated carbon aerogels for bromide and iodide removal from drinking water and to study how the activation of Ag-doped aerogels affects their behavior. It has been observed that the carbonization treatment and activation process of Ag-doped aerogels increased the surface area value ( [Formula: see text] ), whereas the volume of meso-(V(2)) and macropores (V(3)) decreased slightly. Chemical characterization of the materials revealed that carbonization and especially activation process considerably increased the surface basicity of the sample. Original sample (A) presented acidic surface properties (pH(PZC)=4.5) with 21% surface oxygen, whereas the sample that underwent activation showed mainly basic surface chemical properties (pH(PZC)=9.5) with only 6% of surface oxygen. Carbonization and especially, activation process considerable increased the adsorption capacity of bromide and iodide ions. This would mainly be produced by (i) an increase in the microporosity of the sample, which increases Ag-adsorption sites available to halide anions, and (ii) a rise of the basicity of the sample, which produces an increase in attractive electrostatic interactions between the aerogel surface, positively charged at the working pH (pH(solution)相似文献   

6.
氯化锌活化对炭气凝胶微球的结构与电化学性能的影响   总被引:2,自引:2,他引:0  
刘宁 《无机化学学报》2013,29(3):551-556
对炭气凝胶微球在高温下进行氯化锌活化改性,并用于制作超级电容器的电极。采用扫描电镜、N2物理吸附-脱附等对炭气凝胶微球的形貌结构进行表征,采用循环伏安、恒流充放电等测定了材料的电化学性能。结果表明,氯化锌活化有效地改善了炭气凝胶微球的孔结构,通过增加炭气凝胶微球的微孔面积和体积,提高了材料的比表面积和孔隙率。经过氯化锌活化,炭气凝胶微球的电化学性能也随之得到提高,电阻明显减小,比电容提高了2倍以上。  相似文献   

7.
非钛醇盐溶胶-凝胶法制备高光活性纳米晶TiO2气凝胶   总被引:2,自引:0,他引:2  
 以TiCl4为前驱体,采用环氧丙烷快速成胶法合成了具有高光催化活性的纳米晶TiO2气凝胶,利用X射线衍射、N2物理吸附和透射电镜等手段考察了H2O/TiCl4摩尔比和热处理等制备参数对TiO2气凝胶织构性质的影响,并以苯酚的光催化降解为模型反应评价了样品的光催化活性. 结果表明, H2O/TiCl4摩尔比为3时体系的成胶过程较为缓慢,制备的纳米晶TiO2气凝胶样品具有最小的晶粒尺寸及最大的比表面积和孔容,并且具有最佳的光催化活性.  相似文献   

8.
A novel type of sponge-like material for the separation of mixed oil and water liquids has been prepared by the vapour deposition of hydrophobic silanes on ultra-porous nanocellulose aerogels. To achieve this, a highly porous (>99%) nanocellulose aerogel with high structural flexibility and robustness is first formed by freeze-drying an aqueous dispersion of the nanocellulose. The density, pore size distribution and wetting properties of the aerogel can be tuned by selecting the concentration of the nanocellulose dispersion before freeze-drying. The hydrophobic light- weight aerogels are almost instantly filled with the oil phase when selectively absorbing oil from water, with a capacity to absorb up to 45 times their own weight in oil. The oil can also be drained from the aerogel and the aerogel can then be reused for a second absorption cycle.  相似文献   

9.
赵振国  顾惕人 《化学学报》1987,45(7):645-650
测定了15℃和30℃时炭黑自水和环己烷中吸附非离子型表面活性剂TritonX-100和Triton X-305的等温线;计算了吸附过程的标准热力学函数;测定了石墨/水/环己烷和石墨/水/空气的接触角与表面活性剂浓度的关系, 分析所得结果,可得结论:在炭黑/水或石墨/水界面上,Triton型表面活性分子形成单分子吸附层,分子以憎水的iso-C8H17C6H4基团附着在表面,而以亲水的聚氧乙烯链伸入水相的方式取向;在炭黑/环已烷或石墨/环己烷界面上,分子是通过聚氧乙烯链吸附到表面上的,当浓度增加时分子在表面可能通过聚氧乙烯链间的相互作用而发生聚集,即可能形成表面反式胶团。  相似文献   

10.
Inorganic nanowire aerogel with low density, high specific surface area and high porosity has received increasing attention in the field of materials physics and chemistry because of not only the unique structural and physical features of metallic oxide but also low cost, environmental friendliness and earth abundant of precursor materials. In this work, MnO2 nanowire aerogels (MNA) with ultralow density, and stable 3D hierarchical structures was successfully fabricated by freeze‐drying processes using MnO2 nanowire as building blocks. The length of MnO2 nanowires exceeds 100 μm, making it easier to cross‐link and self‐assemble into a 3D network of aerogels, and the acid and alkali resistance of MnO2 enables it to adapt to extreme environments. Simultaneously, the monodispersed MnO2 nanowire was prepared by the hydrothermal method, followed by acid treatment. To obtain superhydrophobic properties and achieve selective oil adsorption, the surfaces of nanowire aerogels were grafted the hydrophobic groups with low surface energy via vapor deposition. It is indicated that the obtained 3D hierarchical MNA show both superhydrophobic and super‐lipophilic properties simultaneously with a high‐water contact angle of 156°  ±  2° and an oil contact angle of 0°. And the MNA exhibited a high oil adsorption capacity of 85–140 g/g, thereby indicating its potential applications in oil/water separation. More importantly, the resulting MNA can be recycled ten cycles without loss of oil absorption capacity (more than 120 g/g). The results presented in this work demonstrate that the as‐prepared nanowire aerogel may find applications in chemical separation and environmental remediation for large‐scale absorption of oils from water.  相似文献   

11.
Silica monolith aerogels with different degrees of hydrophobicity were prepared by incorporating methyltrimethoxysilane (MTMS) or trimethylethoxysilane (TMES) in standard sol-gel synthesis followed by supercritical drying of gels with carbon dioxide (CO(2)) at 40 degrees C and 100 bar. The hydrophobicity of the aerogels was tested by measuring the contact angle (theta). The aerogels were also characterised by FTIR, DSC, and porosity measurements. Adsorption capacity measurements show that such modified hydrophobic silica aerogels are excellent adsorbents for different toxic organic compounds from water. In comparison to granulated active carbon (GAC) they exhibit capacities which are from 15 to 400 times higher for all tested compounds. Adsorption properties of hydrophobic silica aerogel remain stable even after 20 adsorption/desorption cycles.  相似文献   

12.
Capacitive Deionization (CDI) is an emerging technology with great potential applications. Most researchers view it as a viable water treatment alternative to reverse osmosis. This research reports the preparation and application of a carbon aerogel polypyrrole (CA-PPy) composite for the desalination of NaCl solution by the hybrid CDI method. The carbon aerogel (CA) was prepared from a Resorcinol / Formaldehyde precursor by the sol–gel method. The aerogel obtained from the sol–gel was then pyrolysed in a tube furnace to form CA. Polypyrrole (PPy) was prepared by the Oxidative chemical polymerisation of pyrrole, ferric chloride hexahydrate (oxidant), and sodium dodecyl sulfate (dopant). A composite of CA and PPy was then prepared and used to modify carbon electrodes. The CA-PPy composite was characterised to verify its composition, morphology, thermal properties, and functional groups. The electrochemical properties of the material were determined by Cyclic voltammetry (CV) and Electrochemical impedance spectroscopy (EIS) tests. The electrochemical tests were done using a GAMRY potentiostat electrochemical workstation, a 1.0 M KCl was used as the electrolyte, and the applied potential window was (-0.2 to + 0.6) V for the CV test. The EIS test was done with the same concentration of KCl electrolyte at an applied potential of 0.22 V and at a frequency range of (0.1 – 100, 000) Hz. The optimal specific capacitance of the CA is 115F/g, and that of the composite is 360.1F/g, they were both obtained at a scan rate of 5 mV/s. The CDI desalination study of the CA-PPy composite showed a salt adsorption capacity (SAC) of 10.10 mg/g (300 mg/L NaCl solution) – 15.7 mg/g (800 mg/L NaCl solution) at 1.2 V applied voltage. The salt recovery efficiency of the electrode material in the 300 mg/L solution is 27 %, in the 500 mg/L solution, it is 20.12 %, and in the 800 mg/L solution, it is 15.41 %. The electrode material also showed good electrochemical stability after nine cycles of ion adsorption/desorption study.  相似文献   

13.
Cotton carbon aerogel was prepared and used as a new water-insoluble adsorbent to remove strontium from aqueous solution. A comprehensive study on adsorption of strontium by cotton carbon aerogel was conducted regarding the effects of initial pH, temperature, initial strontium concentration, and contact time. The adsorbent was characterized by SEM. The results of regression analysis indicated that the adsorption process largely depends on the pH and temperature. The optimum pH range for adsorption process is 5–7. The maximum removal efficiency of strontium from aqueous solution was 60.16%. Moreover, cotton carbon aerogel adsorbent has good reusability before the fifth reuse.  相似文献   

14.
Physical adsorption is a common method to solve the contamination of methylene blue in dyeing wastewater. As a kind of adsorption material, cellulose aerogels with high porosity and surface areas have great potential application in methylene blue removal. However, the week hydrogen bonding between cellulose nanofibers making the cellulose aerogels with the poor mechanical properties and can be easily destroyed during adsorption. Hence, the preparation of cellulose aerogels with high mechanical strength is still a great challenge. Here, we report a robust super-assembly strategy to fabricate cellulose aerogels by combining cellulose nanofibers with PVA and M-K10. The resulting cellulose aerogels not only has a robust chemically cross-linked network, but also has strong H-bonds, which greatly enhance the mechanical properties. The resulting cellulose aerogels possess a low density of 19.32 mg/cm3.Furthermore, the cellulose aerogel shows 93% shape recovery under 60% strain(9.5 k Pa under 60% strain)after 100 cycles, showing excellent mechanical property. The adsorption capacity of cellulose aerogel to methylene blue solution of 20 mg/L is 2.28 mg/g and the adsorption kinetics and adsorption isotherms have also been studied. Pseudo-second-order kinetic model and Freundlich isotherm model are more acceptable for indicating the adsorption process of methylene blue on the cellulose aerogel. Thus, this compressible and durable cellulose aerogel is a very prospective material for dyeing wastewater cleanup.  相似文献   

15.
Cadmium sulfide (CdS) quantum dots (QDs) were prepared and surface modified by dodecanthiol or mercaptosuccinic acid (MSA) to render a surface with alkyl chains (C(12)-CdS) or carboxylic acid groups (MSA-CdS), respectively. Due to the hydrophobic property of C(12)-CdS, the nanoparticles disperse well in chloroform and stay stable at the air/water interface. However, 3-dimensional (3D) aggregative domains and particle-free pores were formed in the monolayer due to poor particle-water interaction. For the MSA-CdS nanoparticles, the surface was hydrophobized through physical adsorption of a cationic surfactant, cetyltrimethylammonium bromide (CTAB). The capped MSA on the CdS plays an important role in enhancing the adsorption of CTAB and improving the stability of the QDs at the air/water interface. Due to the reversible adsorption of CTAB on MSA-CdS, a hydrophilic area can be exposed in the water-contacting region of a nanoparticle when it stays at the air/water interface. Thus, the CTAB-MSA-CdS QD behaves as an amphiphilic compound at the air/water interface and has properties superior to those of C(12)-CdS QDs in fabrication of layer-by-layer 2D structure of particulate films. The distinct behaviors of the two QDs at the air/water interface and the related effect on the properties of LB films were studied using a number of methods, including pressure-area (pi-A) isotherm, relaxation and hysteresis experiments, in-situ observation of Brewster angle microscopy (BAM), the postdeposition analysis of atomic force microscopy (AFM), and UV-vis spectroscopy.  相似文献   

16.
BaFe10Al2O19 /poly(m-toluidine)(BFA/PMT) composites were synthesized by in-situ polymerization of m-toluidine in the presence of BaFe10Al2O19 particles.The structure,composition and morphology of the obtained samples were characterized by using XRD,FT-IR,UV-visible spectroscopy,SEM and TEM techniques.Their electrical conductivity,magnetic property and microwave absorbing property were measured by the four-probe meter,the vibrating sample magnetometer and the vector network analyzer,respectively.The results indicated that BFA particles were coated effectively by PMT polymer and some interactions between PMT and BFA particles existing in the composites.The conductivity of BFA/PMT composite is smaller than that of pure polymers and its saturation magnetization is a little smaller than that of pure BFA.The influence of the constitution and film thickness of absorbent on its microwave absorbing property is evident.The microwave absorbing properties of the BFA/PMT composites are better than those of pure BFA and PMT.When optimizing the mass rate of BFA/PMT to 0.3,the absorbent with 2 mm film thickness has the minimum reflection loss of 28.26 dB at approximate 14.24 GHz,and the maximum available bandwidth of 8.8 GHz,respectively.The results show that these composites can be used as advancing absorption and shielding materials due to their favorable microwave absorbing property.  相似文献   

17.
Journal of Radioanalytical and Nuclear Chemistry - A novel indole-based aerogel (HTPRA) containing carboxyl groups was prepared for separation of uranium from aqueous solution. The adsorption was...  相似文献   

18.
In the present study, simultaneous adsorption of quinoline and pyridine onto adsorbents such as granular activated carbon (GAC) and bagasse fly ash (BFA) from pyridine–quinoline binary aqueous solution was studied at various temperatures (288–318 K). Gathered equilibrium adsorption data were further analysed using various multicomponent competitive isotherm models such as non-modified and modified competitive Langmuir isotherms, extended-Langmuir isotherm, extended-Freundlich model, Sheindorf–Rebuhn–Sheintuch (SRS) model, and non-modified and modified competitive Redlich–Peterson isotherm model. It was observed that increase in pyridine concentration decreased the total adsorption yield and the individual adsorption yield for both the quinoline and pyridine for both the adsorbents GAC and BFA at all the temperatures studied. Identical trend was observed during the equilibrium uptake of pyridine on to GAC and BFA with an increase in quinoline concentration. The extended-Freundlich model satisfactorily represented the binary adsorption equilibrium data of quinoline and pyridine onto GAC and BFA.  相似文献   

19.
Modification of the composition of polyvinyl alcohol/carbon black aerogel composite materials was performed to make them hydrophobic. The physicochemical properties of the matrices obtained, including their thermal conductivity and resistance to aggressive media and water, were studied. Materials with the moisture capacity decreased by up to 96%, exhibiting resistance to aggressive organic media and high heat insulation properties, were obtained.  相似文献   

20.
Porous/magnetic molecularly imprinted polymers (PM‐MIPs) were prepared by Pickering emulsion polymerization. The reaction was carried out in an oil/water emulsion using magnetic halloysite nanotubes as the stabilizer instead of a toxic surfactant. In the oil phase, the imprinting process was conducted by radical polymerization of functional and cross‐linked monomers, and porogen chloroform generated steam under the high reaction temperature, which resulted in some pores decorated with easily accessible molecular binding sites within the as‐made PM‐MIPs. The characterization demonstrated that the PM‐MIPs were porous and magnetic inorganic–polymer composite microparticles with magnetic sensitivity (Ms = 0.7448 emu/g), thermal stability (below 473 K) and magnetic stability (over the pH range of 2.0–8.0). The PM‐MIPs were used as a sorbent for the selective binding of lambdacyhalothrin (LC) and rapidly separated under an external magnetic field. The Freundlich isotherm model gave a good fit to the experimental data. The adsorption kinetics of the PM‐MIPs was well described by pseudo‐second‐order kinetics, indicating that the chemical process could be the rate‐limiting step in the adsorption of LC. The selective recognition experiments exhibited the outstanding selective adsorption effect of the PM‐MIPs for target LC. Moreover, the PM‐MIPs regeneration without significant loss in adsorption capacity was demonstrated by at least four repeated cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号