首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
 采用浸渍法、粉末涂覆法、沉积沉淀浸渍法、溶胶高温分解法、原位溶液燃烧法和微乳液法制备了 CuO-CeO2/Al2O3/FeCrAl 整体催化剂, 并运用扫描电镜、X 射线衍射、程序升温还原、超声波振动和热振荡等手段研究了制备方法对活性组分的负载及其分布、催化剂结构、粘附稳定性和催化 CO 优先氧化反应性能的影响. 结果表明, 溶胶高温分解法、原位溶液燃烧法和微乳液法制备的整体催化剂表现出较好的催化 CO 优先氧化反应性能和较高的粘附稳定性.  相似文献   

2.
用交替微波法制备了碳化钨与多壁碳纳米管复合材料(WC/MWCNT),以该材料为载体制备了Pd基催化剂(Pd-WC/MWCNT),并将催化剂用于醇的催化氧化反应.结果表明,Pd-WC/MWCNT催化剂对乙醇的催化氧化活性是Pd/C催化剂的5倍.交换电流密度测量和反应活化能计算表明,Pd-WC/WIWCNT催化剂对乙醇催化氧化的交换电流密度比Pd/C大两个数量级,反应活化能低一倍以上.Pd-WC/MWCNT催化剂催化氧化乙醇性能的大幅度提高是碳化钨与Pd颗粒的协同效应和碳纳米管的结构效应共同作用的结果.  相似文献   

3.
通过环境友好、价格便宜的铁配合物,在室温下催化以水为溶剂的双氧水氧化苯甲醇制备醛的反应,是典型的绿色醇氧化法。同时,原位制备的催化剂不仅具有高效催化活性,而且选择性强,有效地避免苯甲醛的过度氧化产生苯甲酸。  相似文献   

4.
环氧苯乙烷和苯甲醛都是重要的化工原料和有机合成中间体,广泛应用在工业化生产和有机合成领域。本文首先回顾了环氧苯乙烷和苯甲醛的生产及研究背景,概述了最新的研究进展,继而从生产环氧苯乙烷和苯甲醛的原料苯乙烯着手,概述了7种类型Ag系催化剂用于催化苯乙烯环氧化反应,并介绍了其制备方法、结构特点和催化性能,对这7种类型催化剂的物质特性进行归纳,阐述了Ag系催化剂在苯乙烯催化反应中的应用进展。  相似文献   

5.
通过溶剂热法成功制备了一种基于金属有机骨架(MOF)的复合材料Cu-Cu2O/UiO-66-NH2,采用傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)对材料进行全面表征。在空气作氧化剂条件下,以苯甲醇氧化为苯甲醛作为模型反应,系统地考察了溶剂、温度、催化剂各组分用量等因素对催化效果的影响。研究结果表明,该复合催化剂在醇选择性氧化反应中表现出优异的催化性能,60℃下反应5 h便可将苯甲醇定量转化为苯甲醛,并对其他苄基醇、烯丙基醇和杂芳基醇等底物也展现出良好活性。此外,循环利用3次后,该催化剂活性几乎不变,表明其具有良好的稳定性和重复使用性。  相似文献   

6.
采用简单的原位还原合成方法,利用具有温和还原性能的氨硼烷作为还原剂,在室温下一步还原氧化石墨烯和氯化钴混合溶液制备了还原氧化石墨烯负载钴纳米复合材料催化剂. 利用所制备的钴/还原氧化石墨烯催化剂催化氨硼烷水解制氢,发现钴/还原氧化石墨烯具有优异的催化性能. 相对于没有负载的钴纳米粒子以及采用硼氢化钠作为还原剂制备的钴/还原氧化石墨烯催化剂,采用氨硼烷还原制备的钴/还原氧化石墨烯催化剂表现出更加优越的催化性能. 动力学测试表明,钴/还原氧化石墨烯催化氨硼烷水解反应为零级反应,同时钴/还原氧化石墨烯催化剂催化氨硼烷水解反应的活化能为27.10 kJ·mol-1,低于大部分已报道的其它催化剂,甚至一些贵金属催化剂的活化能. 钴/还原氧化石墨烯催化剂有着稳定的循环使用性,特别是其具有的磁性使得它能够直接从溶液中通过磁力回收,极具应用前景. 这种简单有效的合成方法有望推广到其它的金属-还原氧化石墨烯纳米复合材料体系.  相似文献   

7.
采用简单的原位还原合成方法,利用具有温和还原性能的氨硼烷作为还原剂,在室温下一步还原氧化石墨烯和氯化钴混合溶液制备了还原氧化石墨烯负载钴纳米复合材料催化剂.利用所制备的钴/还原氧化石墨烯催化剂催化氨硼烷水解制氢,发现钴/还原氧化石墨烯具有优异的催化性能.相对于没有负载的钴纳米粒子以及采用硼氢化钠作为还原剂制备的钴/还原氧化石墨烯催化剂,采用氨硼烷还原制备的钴/还原氧化石墨烯催化剂表现出更加优越的催化性能.动力学测试表明,钴/还原氧化石墨烯催化氨硼烷水解反应为零级反应,同时钴/还原氧化石墨烯催化剂催化氨硼烷水解反应的活化能为27.10 kJ·mol-1,低于大部分已报道的其它催化剂,甚至一些贵金属催化剂的活化能.钴/还原氧化石墨烯催化剂有着稳定的循环使用性,特别是其具有的磁性使得它能够直接从溶液中通过磁力回收,极具应用前景.这种简单有效的合成方法有望推广到其它的金属-还原氧化石墨烯纳米复合材料体系.  相似文献   

8.
采用去合金化法制备了多孔铜(PC), 并以此为还原剂和模板与含有贵金属离子的溶液进行置换反应, 简单有效地制备了多孔M/PC(M=Ag, Au, Pt, Pd)双金属催化剂, 并对样品的形貌\, 结构和化学组成进行了表征, 利用苯甲醇气相选择性催化氧化实验评价了其催化性能. 实验结果表明, 所制备的多孔铜基催化剂具有良好的双金属协同催化效应, 对苯甲醇气相选择性氧化具有很好的催化活性和选择性, 其中Ag/PC具有最优的催化性能.  相似文献   

9.
通过简单的钴铁前躯体热分解法制备了系列一维Co_(1-x)Fe_xO_y(0≤x≤1)多孔纳米材料,并在1 mol·L~(-1) KOH溶液中研究了其电解水析氧催化性能。研究发现不同Fe掺杂量对材料的结构与电解水析氧催化性能有较大的影响,其中16%(n/n)Fe掺杂量的Co_(1-x)Fe_xO_y具有最优的析氧催化性能。在10 m A·cm~(-2)电流密度下其析氧过电位为345 mV,塔菲尔斜率为54 mV·dec~(-1),并表现出优异的析氧稳定性能。廉价、高效的Co_(1-x)Fe_xO_y多孔纳米棒材料有望成为优良的析氧催化剂用于电解水制氢。  相似文献   

10.
通过溶剂热法成功制备了一种基于金属有机骨架(MOF)的复合材料Cu-Cu2O/UiO-66-NH2,采用傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)对材料进行全面表征。在空气作氧化剂条件下,以苯甲醇氧化为苯甲醛作为模型反应,系统地考察了溶剂、温度、催化剂各组分用量等因素对催化效果的影响。研究结果表明,该复合催化剂在醇选择性氧化反应中表现出优异的催化性能,60℃下反应5 h便可将苯甲醇定量转化为苯甲醛,并对其他苄基醇、烯丙基醇和杂芳基醇等底物也展现出良好活性。此外,循环利用3次后,该催化剂活性几乎不变,表明其具有良好的稳定性和重复使用性。  相似文献   

11.
FexOy/SBA-15介孔分子筛的合成以及性能研究   总被引:1,自引:0,他引:1       下载免费PDF全文
在酸性溶液中利用溶胶凝胶-pH值控制两步法直接合成FexOy/SBA-15介孔分子筛,同时利用场发射扫描电子显微镜(FESEM)、小角度X射线衍射(Low-angle XRD)、透射电子显微镜(TEM)以及振动样品磁强计(VSM)对制备的各种SBA-15介孔分子筛进行结构以及性能的测试、表征。结果显示FexOy均匀地分散在SBA-15的骨架中,而且会对SBA-15介孔分子筛起钉轧作用。而后着重研究了FexOy的加入对SBA-15介孔分子筛的热稳定性、催化特性以及磁学性能的影响。FexOy的引入可以增加制备的SBA-15介孔分子筛的热稳定性;FexOy的引入可以改善SBA-15介孔分子筛的催化活性,得到了开口的、石墨化程度较好的纳米碳管。FexOy的引入使SBA-15介孔分子筛具有明显的铁磁性。  相似文献   

12.
超细Fe-V-O催化剂上甲苯液相氧化制苯甲醛   总被引:2,自引:0,他引:2  
张贵泉  张昕  祁敏  林涛  龚婷 《催化学报》2012,33(5):870-877
分别采用共沉淀法,凝胶自燃烧法和水热法制备了Fe-V-O复合氧化物催化剂用于催化过氧化氢液相氧化甲苯制苯甲醛反应中,并采用N2等温吸附-脱附法,粉末X射线衍射,红外光谱,扫描电子显微镜,能量弥散X射线光谱和H2程序升温还原等方法对催化剂性质进行了表征.结果表明,制备方法显著影响催化剂的结构,比表面积,形貌,表面元素组成和还原性.Fe-V-O催化剂颗粒的超细化调变了其比表面积和还原性,从而改善了催化剂上甲苯液相氧化制苯甲醛反应性能.其中水热法制备的超细Fe-V-O催化剂具有最高的苯甲醛收率和较好的重复使用性能.这主要归因于该催化剂颗粒尺寸小,比表面积大,以及表面较多的活性钒氧物种和适宜的还原性.  相似文献   

13.
An environmentally benign synthesis of natural benzaldehyde from cinnamaldehyde under mild conditions has been investigated with sodium hypochlorite as oxidant and β-cyclodextrin polymer as phase-transfer catalyst. The polymer showed excellent catalytic activity exhibiting 92% conversion and 62% selectivity to benzaldehyde at ambient pressure and at 70°C. This catalyst could be recovered and reused six times, and the catalyst efficiency remained unchanged, which suggests that the catalyst is an efficient and green catalyst for oxidation of cinnamaldehyde. The results reported herein may be a promising method in industry for the synthesis of natural benzaldehyde.  相似文献   

14.
石晓波  李春根  汪德先 《化学研究》2002,13(1):15-17,24
以硝酸铈和钼酸铵为原料 ,采用溶胶 -凝胶法和微波加热技术制备了Ce2 Mo3 O12 超微粒子催化剂 ,使用DTA -TG ,IR ,XRD以及BET比表面测试等表征手段 ,考察了制备条件对复合氧化物超微粒子形成 ,晶相和比表面积的影响 .同时 ,测试了该样品对甲苯选择性氧化制苯甲醛反应的催化性能 .结果表明 :制备Ce2 Mo3 O12 超微粒子的适宜条件为 :初始溶液pH =1.0 ,柠檬酸 / (铈 +钼 )摩尔比等于 0 .4 ,在此条件下制得的干凝胶 ,经微波加热处理后 ,粒子的比表面积为 35 .8m2 /g ,粒径约为 4 0nm .在由甲苯气相选择氧化制苯甲醛的反应中表现出较好的催化活性  相似文献   

15.
A Novel Oxidizing Reagent Based on Potassium Ferrate(VI)(1)   总被引:1,自引:0,他引:1  
A new, efficient preparation has been devised for potassium ferrate(VI) (K(2)FeO(4)). The ability of this high-valent iron salt for oxidizing organic substrates in nonaqueous media was studied. Using benzyl alcohol as a model, the catalytic activity of a wide range of microporous adsorbents was ascertained. Among numerous solid supports of the aluminosilicate type, the K10 montmorillonite clay was found to be best at achieving quantitative formation of benzaldehyde, without any overoxidation to benzoic acid. The roles of the various parameters (reaction time and temperature, nature of the solvent, method of preparation of the solid reagent) were investigated. The evidence points to a polar reaction mechanism. The ensuing procedure was applied successfully, at room temperature, to oxidation of a series of alcohols to aldehydes and ketones, to oxidative coupling of thiols to disulfides, and to oxidation of nitrogen derivatives. At 75 degrees C, the reagent has the capability of oxidizing both activated and nonactivated hydrocarbons. Toluene is turned into benzyl alcohol (and benzaldehyde). Cycloalkanes are also oxidized, in significant (30-40%) yields, to the respective cycloalkanols (and cycloalkanones). Thus, potassium ferrate, used in conjunction with an appropriate heterogeneous catalyst, is a strong and environmentally friendly oxidant.  相似文献   

16.
溶胶-凝胶法制备Fe2(MoO4)3超微粒子催化剂   总被引:1,自引:0,他引:1  
以硝酸铁和钼酸铵为原料,采用溶胶-凝胶法和微波加热技术制备了F 2(MoO4)3超微子催化剂,使用DTA-TG,IR,XRD以及BET比表面测试等手段,考察了制备条件对复合氧化物超微粒子形成、晶相和比表面积的影响。同时测试了该样品对甲苯选择性氧化制苯甲醛的催化性能。结果表明:制备Fe2(MoO4)2超微粒子的适宜条件为:初始溶液pH=1.0,mol柠檬酸:mol(铁+钼)=0.4。在此条件下制得的干凝胶,经微波加热处理后粒子的比表面积为36.4m^2/g,粒径约为35nm。在由甲苯气相选择氧化制苯甲醛的反应中表现出较高的催化活性。  相似文献   

17.
以SBA-15为载体,采用浸渍法制备了不同Ag含量的Ag/SBA-15,通过N2吸附-脱附、X射线衍射、扫描电子显微镜、高分辨透射电子显微镜、X射线光电子能谱和电感耦合等离子体质谱对催化剂进行了表征。将Ag/SBA-15用于苯甲醇气相选择性催化氧化合成苯甲醛,研究了反应条件对转化率和选择性的影响。结果表明,Ag/SBA-15具有均一的一维孔道结构、较厚的孔壁(3-5 nm)及较大的比表面积(411-541 m2/g),其规整纳米空间的限域作用使一定负载量的Ag以纳米尺寸均匀分散于介孔SBA-15孔道内,增加了活性组分的比表面积。亲核性氧物种从Ag到SBA-15表面的氧溢流,提高了低温下Ag/SBA-15对苯甲醇气相选择性氧化合成苯甲醛的催化性能。5.3% Ag/SBA-15中的Ag粒径为5-6 nm,且均匀分散于载体孔道中,反应温度为220℃时,苯甲醇转化率为87%,苯甲醛选择性为95%;240℃时,苯甲醇转化率和苯甲醛选择性分别高达94%和97%;并在240-300℃范围内,其催化活性和选择性保持不变,表现出了良好的温度耐受能力。催化剂经活化再生可以连续使用40 h,选择性基本保持不变。  相似文献   

18.
田涛  刘英  张勋高 《催化学报》2015,(8):1358-1364
采用均匀沉积-沉淀法制备了氧化铜修饰羟基磷灰石负载金催化剂(Au/CuO-HAP),并用原子吸收光谱、N2吸附脱附、X射线粉末衍射、透射电镜和X射线光电子能谱等方法对催化剂结构和形貌进行了表征.考察了催化剂对醇类液相需氧氧化的催化性能.与单金属Au/HAP或CuO-HAP相比较,双金属Au/CuO-HAP对苯甲醇氧化的催化活性和苯甲醛的选择性有显著提高,120 oC反应1.5 h,苯甲醇的转化率和苯甲醛的选择性分别达到99.7%和98.4%.在Au/CuO-HAP的催化下,其它类型的芳香醇均可高选择性转化为相应的醛或酮. Au/CuO-HAP催化剂有很好的稳定性和可回收性,4次回收后,其催化活性没有明显变化.  相似文献   

19.
 分别采用甘氨酸硝酸盐法、溶胶凝胶法、共沉淀法、燃烧法以及水热法制备了钙钛矿型 LaMn0.8Mg0.2O3 复合氧化物, 用 X 射线衍射、红外光谱、H2 程序升温还原和低温 N2 吸附对其进行了表征, 并考察了其对甲烷燃烧的催化活性. 结果表明, 制备方法和焙烧温度对 LaMn0.8Mg0.2O3 钙钛矿型催化剂的结构、晶粒大小和不同类型的氧物种影响很大. 以甘氨酸硝酸盐法制备的钙钛矿型催化剂经 700 °C 焙烧后表现出最高的催化活性, T50 (甲烷转化率达到 50% 时的温度) 仅为 440 °C. 这归结于它较小的晶粒尺寸 (12.4 nm) 和较大的比表面积 (18.6 m2/g), 以及催化剂表面富集的 Mn4+, 从而使表面氧物种更容易移动和/或更具有反应活性.  相似文献   

20.
以酚醛树脂作为碳源,采用嵌段共聚物模板法一步制备新型有序介孔碳化钨/碳(WC/C)纳米颗粒. WC/C颗粒的比表面积为414 m2·g-1,表面的平均孔径约为38 nm,处于介孔范围内(2 ~ 50 nm). 通过调节树脂预聚时间以及碳化温度等条件制备出结构形貌较优的WC/C复合材料,并探讨了材料形成机理. 使用X射线衍射、扫描电镜、透射电镜及氮气吸脱附等方法表征了复合材料的结构. 将贵金属铂负载于WC/C表面制备得新电催化材料Pt-WC/C,使用循环伏安法和计时电流法对Pt-WC/C复合材料的电化学性能进行检测,并与商用碳载铂(Pt/C)材料进行对比. 测试结果发现,Pt-WC/C对甲醇的电催化活性以及稳定性等方面都表现出优于商用Pt/C材料的活性,这主要归功于碳化钨高度分散于碳表面.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号