首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Zhuo SJ  Zheng H  Chen JL  Li DH  Wu YQ  Zhu CQ 《Talanta》2004,64(2):528-533
A new method was developed for determination of micro amounts of nucleic acids based on near-infrared (near-IR) fluorescence recovery, employing a two-reagent system which is composed of an anionic tetracarboxy aluminum phthalocyanine (AlC4Pc) and a cationic tetra-N-hexadecylpyridiniumyl porphyrin (TC16PyP). The fluorescence of the AlC4Pc, with the maximum emission wavelength at 701 nm, could be quenched by TC16PyP at its proper concentration, but recovered by adding nucleic acids. Under optimal conditions, the recovered fluorescence is proportional to the concentration of nucleic acids. The calibration graphs are linear over the range of 1-200 ng mL−1 for fish sperm DNA (FS DNA) and 2-400 ng mL−1 for calf thymus DNA (CT DNA). The corresponding detection limits are 0.59 ng mL−1 for FS DNA and 0.82 ng mL−1 for CT DNA, respectively. Four synthetic and three real nucleic acid samples were determined with satisfactory results.  相似文献   

2.
A simple, rapid and sensitive high-performance liquid chromatography method was developed for the analysis of the sesquiterpene lactone 15-deoxygoyazensolide (LAC15-D) in rat plasma samples. The chromatographic separation was achieved on a LiChrospher® RP18 column using methanol:water (50:50, v/v) containing 0.6% acetic acid as mobile phase, at a flow rate of 0.7 mL min−1. UV detection was carried out at 270 nm. Phenytoin was used as internal standard. Prior to the analysis, the rat plasma samples were submitted to liquid-liquid extraction with dichloromethane. The mean absolute recoveries were 73% with R.S.D. values lower than 3.5. The method was linear over the 6.0-2000 ng mL−1 concentration range and the quantification limit was 6.0 ng mL−1. Within-day and between-day assay precision and accuracy were studied at three concentration levels (15, 300 and 480 ng mL−1) and were lower than 15%. The validated method was used to measure the plasmatic concentration of LAC15-D in rats that received a single intraperitoneal dose of 30 mg kg−1.  相似文献   

3.
Hoogerheide JG  Scott RA 《Talanta》2005,65(2):453-460
A rapid and sensitive method for the determination of alkylating agents in complex reaction mixtures was developed and characterized. Analyses are based on the alkylation of 2-mercaptopyridine by the analyte; the derivative is separated by RP-HPLC and measured by fluorescence detection. When applied to the determination of dimethyl sulfate, the method is linear over four orders of magnitude: 0.01-10 μg mL−1. By using recrystallized 2-mercaptopyridine, quantitation limits of 10 ng mL−1 can be achieved. Precision of the assay is 2% R.S.D. in the 1-10 μg mL−1 range and about 15% R.S.D. at 10 ng mL−1. Studies on the pH dependence of the derivatization reaction were key to minimizing interference from the dimethyl sulfate degradation product, monomethyl sulfate, in quenched reaction samples.  相似文献   

4.
Changlun Tong  Zhou Hu 《Talanta》2007,71(2):816-821
The fluorescence intensity of the enoxacin (ENX)-Tb3+ complex enhanced by DNA was studied. On the basis of this study, an environmentally friendly fluorescence probe of enoxacin-Tb3+ for the determination of single-stranded and double-stranded DNA was developed. Under the optimal conditions, the enhanced fluorescence intensity was in proportion to the concentration of DNA in the range of 2.0 × 10−8 to 2.0 × 10−6 g mL−1 for hsDNA, 1.0 × 10−8 to 1.0 × 10−6 g mL−1 for ctDNA and 5.0 × 10−9 to 1.0 × 10−6 g mL−1 for thermally denatured ctDNA. The detection limits (S/N = 3) were 5.0, 9.0 and 3.0 ng mL−1, respectively. The interaction modes between ENX-Tb3+ and DNA and the mechanism of the fluorescence enhancement were also discussed in details. The experimental results from UV absorption spectra, fluorescence spectra and the competing combination tests between the ENX-Tb3+ complex and EB probe indicated that the possible interaction modes between enoxacin-Tb3+ complex and DNA had at least two different binding modes: the electrostatic binding and the intercalation binding. Additionally, this fluorescence probe was used to study the interaction between heavy metals and DNA.  相似文献   

5.
A novel flow-injection spectrophotometry has been developed for the determination of molybdenum(VI) at nanograms per milliliter levels. The method is based on the catalytic effect of molybdenum(VI) on the bromate oxidative coupling of p-hydrazinobenzenesulfonic acid with N-(1-naphthyl)ethylenediamine to form an azo dye (λmax = 530 nm). Chromotropic acid (4,5-dihydroxy-2,7-naphthalenedisulfonic acid) acted as an effective activator for the molybdenum(VI)-catalyzed reaction and increased the sensitivity of the method. The reaction was monitored by measuring the change in absorbance of the dye produced. The proposed method allowed the determination of molybdenum(VI) in the range 1.0-20 ng mL−1 with sample throughput of 15 h−1. The limit of detection was 0.5 ng mL−1 and a relative standard deviation for 10 ng mL−1 molybdenum(VI) (n = 10) was 2.5%. The interfering ions were eliminated by using the combination of a masking agent and on-line minicolumn packed with cation exchanger. The present method was successfully applied to the determination of molybdenum(VI) in plant foodstuffs.  相似文献   

6.
The supramolecular interaction of a homologous series of cucurbit[n]uril (CB[n], n = 5, 6, 7, 8) hosts and coptisine (COP) was studied by spectrofluorimetry. All of the CB[n]s were found to react with COP to form 1:1 host-guest stable complexes and the fluorescence intensity of the complexes was greatly enhanced. The apparent association constants of the complexes were 1.44 × 104, 1.28 × 104, 1.86 × 104 and 1.26 × 104 L mol−1 for CB[5], CB[6], CB[7] and CB[8], respectively. In addition, CB[5] and CB[7] exhibited a higher fluorescence signal than CB[6] and CB[8]. The fluorescence intensity of the complex with CB[7] was enhanced 70-fold compared to that of the studied drug itself. Based on the significant enhancement of fluorescence intensity of supramolecular complex, a simple, rapid, highly sensitive, and selective spectrofluorimetric method was developed for the determination of COP in aqueous solution in the presence of CB[7]. At the optimum reaction conditions, a linear relationship was obtained in the range from 0.05 to 1700 ng mL−1 with a detection limit of 0.012 ng mL−1. The proposed method was successfully applied for the determination of the drug in urine and serum samples.  相似文献   

7.
Phosphodiesters quaternary ammonium salt (PQAS) displayed quite intense light scattering in aqueous solution under the optimum condition. In addition, the resonance light scattering (RLS) signal of PQAS was remarkably decreased after adding trace amount polysaccharide with the maximum peak located at 391 nm. It was found that the decreased RLS intensity of the PQAS − PPGL system (ΔIRLS) was in proportion to PPGL concentration in the range of 0.1-30 ng mL−1, with a lower detection limit of 0.05 ng mL−1. Based on this rare decreased RLS phenomenon, the novel method of the determination of purified polysaccharide of Gracilaria Lemaneiformis (PPGL) at nanogram level was proposed in this contribution. The proposed approach was used to determine purified polysaccharide extracted from Gracilaria Lemaneiformis with satisfactory results. Compared with the reported polysaccharide assays, this proposed method has good selectivity, high sensitivity and is especially simple and convenient. Moreover, the mechanism of the reaction between PQAS and polysaccharide was investigated by RLS, fluorescence, and fluorescence lifetime spectra.  相似文献   

8.
A double stranded DNA based fluorescence bioprobe for anticancer agent (doxorubicin) detection is described. This method provides a new way for sensitive DNA/drug interaction study by a homogeneous assay. The probe employs the long-wavelength intercalating fluorophore TOTO-3® (TT3). The anticancer agent, doxorubicin, which interacts with the DNA-TT3 complex, was indirectly measured by the decrease in the fluorescence intensity. Various oligonucleotides with different sequences were examined. Doxorubicin has preference for the oligonucleotide 5′AGCACG3′. Enhanced fluorescence observed for the TT3 intercalation with this oligonucleotide makes the DNA-dye complex a suitable bioprobe for doxorubicin detection by competitive assay. A home-built CCD camera setup was applied along with 384 well plate assay format for high throughput fluorescence imaging. The detection limit can be as low as 25 ng mL−1 with an upper limit of 100 μg mL−1. The recovery test with spiked serum sample shows that this method can be a potential routine method for therapeutic drug monitoring (TDM).  相似文献   

9.
For the detection of the major active component of cannabis, Δ9-tetrahydrocannabinol (THC) in aqueous samples, a homogeneous competitive immunoassay based on fluorescence quenching induced by fluorescence resonance energy transfer (FRET) has been developed. The fluorescence of anti-THC-antibody, labeled with fluorescence dye DY-481XL, can be quenched after its binding to THC-BSA-quencher conjugate (bovine serum albumin coupled with THC and another fluorescence dye, DYQ-661, as quencher). This quenching effect is inhibited when the antibodies bind to free THC in aqueous sample, thus competing for binding sites with the THC-BSA-quencher conjugate. The extent of the inhibition corresponds to the concentration of THC in the samples. The assay principle is simple and the test duration is within 10 min. The detection limit for THC in buffer was 2 ng mL−1. In pooled saliva samples a detection limit of 50 ng mL−1 was achieved.  相似文献   

10.
A new strategy for homogeneous protein detection is developed based on a cucurbit[7]uril (CB[7]) functionalized electrode. The analytical procedure consists of the binding of target protein to its aptamer in the test solution, followed by an exonuclease-catalyzed digestion of methylene blue (MB) tag labeled DNA oligonucleotides. Since CB[7] molecules immobilized on the electrode may efficiently capture the released MB-labeled nucleotides, the MB tags are concentrated to the electrode surface and subsequently yield highly sensitive electrochemical signal, which is related to the concentration of the target protein. The method combines the host–guest properties of CB[7] with the immobilization-free homogeneous assay, providing a powerful tool for protein detection. Taking the detection of osteopontin as an example, the proposed method can have a linear response to the target protein in a range from 50 to 500 ng mL−1 with a detection limit of 10.7 ng mL−1. It can also show high specificity and good reproducibility, and can be used directly for the assay of osteopontin in serum samples.  相似文献   

11.
A highly selective and sensitive electrogenerated chemiluminescence (ECL) biosensor for the detection of prostate PC-3 cancer cells was designed using a prostate specific antibody as a capture probe and ruthenium complex-labelled wheat germ agglutinin as a signal probe. The ECL biosensor was fabricated by covalently immobilising the capture probe on a graphene oxide-coated glassy carbon electrode. Target PC-3 cells were selectively captured on the surface of the biosensor, and then, the signal probe was bound with the captured PC-3 cells to form a sandwich. In the presence of tripropylamine, the ECL intensity of the sandwich biosensor was logarithmically directly proportion to the concentration of PC-3 cells over a range from 7.0 × 102 to 3.0 × 104 cells mL−1, with a detection limit of 2.6 × 102 cells mL−1. The ECL biosensor was also applied to detect prostate specific antigen with a detection limit of 0.1 ng mL−1. The high selectivity of the biosensor was demonstrated in comparison with that of a lectin-based biosensor. The strategy developed in this study may be a promising approach and could be extended to the design of ECL biosensors for highly sensitive and selective detection of other cancer-related cells or cancer biomarkers using different probes.  相似文献   

12.
An ultrasensitive fluorescence resonance energy transfer (FRET) bioassay was developed to detect staphylococcal enterotoxin B (SEB), a low molecular exotoxin, using an aptamer-affinity method coupled with upconversion nanoparticles (UCNPs)-sensing, and the fluorescence intensity was prominently enhanced using an exonuclease-catalyzed target recycling strategy. To construct this aptasensor, both fluorescence donor probes (complementary DNA1–UCNPs) and fluorescence quencher probes (complementary DNA2–Black Hole Quencher3 (BHQ3)) were hybridized to an SEB aptamer, and double-strand oligonucleotides were fabricated, which quenched the fluorescence of the UCNPs via FRET. The formation of an aptamer–SEB complex in the presence of the SEB analyte resulted in not only the dissociation of aptamer from the double-strand DNA but also both the disruption of the FRET system and the restoration of the UCNPs fluorescence. In addition, the SEB was liberated from the aptamer–SEB complex using exonuclease I, an exonuclease specific to single-stranded DNA, for analyte recycling by selectively digesting a particular DNA (SEB aptamer). Based on this exonuclease-catalyzed target recycling strategy, an amplified fluorescence intensity could be produced using different SEB concentrations. Using optimized experimental conditions produced an ultrasensitive aptasensor for the detection of SEB, with a wide linear range of 0.001–1 ng mL−1 and a lower detection limit (LOD) of 0.3 pg mL−1 SEB (at 3σ). The fabricated aptasensor was used to measure SEB in a real milk samples and validated using the ELISA method. Furthermore, a novel aptasensor FRET assay was established for the first time using 30 mol% Mn2+ ions doped NaYF4:Yb/Er (20/2 mol%) UCNPs as the donor probes, which suggests that UCNPs are superior fluorescence labeling materials for food safety analysis.  相似文献   

13.
A novel photonic suspension array was developed for multiplex immunoassay. The carries of this array were silica colloidal crystal beads (SCCBs). The codes of these carriers are the characteristic reflection peak originated from their structural periodicity, and therefore they do not suffer from fading, bleaching, quenching, and chemical instability. In addition, because no dyes or materials related with fluorescence are included, the fluorescence background of SCCBs is very low. With a sandwich format, the proposed suspension array was used for simultaneous multiplex detection of tumor markers in one test tube. The results showed that the four tumor markers, α-fetoprotein (AFP), carcinoembryonic antigen (CEA), carcinoma antigen 125 (CA 125) and carcinoma antigen 19-9 (CA 19-9) could be assayed in the ranges of 1.0-500 ng mL−1, 1.0-500 ng mL−1, 1.0-500 U mL−1 and 3.0-500 U mL−1 with limits of detection of 0.68 ng mL−1, 0.95 ng mL−1, 0.99 U mL−1 and 2.30 U mL−1 at 3σ, respectively. The proposed array showed acceptable accuracy, detection reproducibility, storage stability and the results obtained were in acceptable agreement with those from parallel single-analyte test of practical clinical sera. This technique provides a new strategy for low cost, automated, and simultaneous multiplex immunoassay.  相似文献   

14.
In the presented work, a disposable immunosensor for the detection of testosterone, an endogenous steroid hormone, in bovine urine has been developed using screen-printed electrodes (SPEs). Due to concerns over the use of steroid hormones as growth promoters, the EU prohibits their use in food producing animals. Consequently, rigorous screening procedures have been implemented in all member states to detect the illegal administration of such compounds. Competitive immunoassays were developed, initially by enzyme linked immunosorbent assay (ELISA), and subsequently transferred to an electrochemical immunosensor format using disposable screen-printed carbon electrodes. Horseradish peroxidase (HRP) was the enzyme label of choice and chronoamperometric detection was carried out using a tetramethylbenzidine/hydrogen peroxide (TMB/H2O2) substrate system, at +100 mV. The EC50 values obtained for the assay in buffer and urine gave relatively comparable results, 710 pg mL−1 and 960 pg mL−1, respectively. The linear range obtained for the assay in buffer extended from 0.03 ng mL−1 to 40 ng mL−1; while that in urine ranged from 0.03 ng mL−1 to 1.6 ng mL−1. The corresponding limits of detection (LOD) in buffer and urine were 26 pg mL−1 and 1.8 pg mL−1. Cross reactivity profiles of the antibody have been examined, with notable cross reactivities with 19-nortestosterone (11.6%) and boldenone (9.86%). Precision studies for the sensor demonstrated adequate reproducibility (CV < 13%, n = 3) and repeatability (CV < 9%, n = 3). Recovery data obtained showed good agreement between spiking studies and known concentrations of analyte. Sensors showed stability for 4 days at +4 °C. A sensitive, highly specific, inexpensive, disposable immunosensor, showing excellent overall performance for the detection of testosterone in bovine urine, has been developed.  相似文献   

15.
A novel immunoassay format employing direct coating of small molecular hapten on microtiter plates is reported for the detection of atrazine and 2,4-dichlorophenoxyacetic (2,4-D). In this assay, the polystyrene surface of microtiter plates was first treated with an acid to generate -NO2 groups on the surface. Acid treated plates were further treated with 3-aminoprpyltriethoxysilane (APTES) to functionalize the plate surface with amino groups for covalent linkage to small molecular hapten with carboxyl groups. The modified plates showed significantly high antibody binding in comparison to plates coated with hapten-carrier protein conjugates and presented excellent stability as a function of the buffer pH and reaction time. The developed assay employing direct hapten coated plates and using affinity purified atrazine and 2,4-D antibodies demonstrated very high sensitivity, IC50 values for atrazine and 2,4-D equal to 0.8 ng mL−1 and 7 ng mL−1, respectively. The assay could detect atrazine and 2,4-D levels in standard water samples even at a very low concentration upto 0.02 and 0.7 ng mL−1 respectively in the optimum working range between 0.01 and 1000 ng mL−1 with good signal reproducibility (p values: 0.091 and 0.224 for atrazine and 2,4-D, respectively). The developed immunoassay format could be used as convenient quantitative tool for the sensitive screening of pesticides in samples.  相似文献   

16.
Dong N  Cheng LN  Wang XL  Li Q  Dai CY  Tao Z 《Talanta》2011,84(3):684-689
The supramolecular interaction of cucurbit(n = 7)uril (Q[7]) with berberine chloride (BER) has been studied in aqueous solution at pH 2.0 and room temperature by spectro-fluorimetry. The association constant of the complex was 2.07 × 106 L mol−1 calculated by using a nonlinear least squares method. 1H NMR spectra confirmed that a 1:1 stable complex is formed between Q[7] and BER. This work proposes a possible interaction mode, in which the guest BER is incorporated inside the hydrophobic cavity of the host Q[7] via the isoquinoline ring part of the guest molecule. Based on a significant enhancement of the fluorescence intensity of this supramolecular complex, a spectrofluorimetric method with high sensitivity and selectivity has been developed for the determination of BER in aqueous solution in the presence of Q[7]. The linear range of the method was from 7.43 to 11.2 × 103 ng mL−1with the detection limit 4.2 ng mL−1. There was no interference from the compounds normally used in tablets, serum or urine constituents. The proposed method was applied to the determination of BER in tablets, serum and urine samples with satisfactory results and good consistency with those obtained by the pharmacopoeia method. This shows that it has promising potential for therapeutic drug monitoring and pharmokinetics and for clinical application.  相似文献   

17.
It is critical to develop a cost-effective quantitative/semiquantitative assay for rapid diagnosis and on-site detection of toxic or harmful substances. Here, a naked-eye based semiquantitative immunochromatographic strip (NSI-strip) was developed, on which three test lines (TLs, TL-I, TL-II and TL-III) were dispensed on a nitrocellulose membrane to form the test zone. Similar as the traditional strip assay for small molecule, the NSI-strip assay was also based on the competitive theory, difference was that the analyte competed three times with the capture reagent for the limited number of antibody binding sites. After the assay, the number of TLs developed in the test zone was inversely proportional to the analyte concentration, thus analyte content levels could be determined by observing the appeared number of TLs. Taking aflatoxin B1 as the model analyte, visual detection limit of the NSI-strip was 0.06 ng mL−1 and threshold concentrations for TL-I–III were 0.125, 0.5, and 2.0 ng mL−1, respectively. Therefore, according to the appeared number of TLs, the following concentration ranges would be detectable by visual examination: 0–0.06 ng mL−1 (negative samples), and 0.06–0.125 ng mL−1, 0.125–0.5 ng mL−1, 0.5–2.0 ng mL−1 and >2.0 ng mL−1 (positive samples). That was to say, compared to traditional strips the NSI-strip could offer more parameter information of the target analyte content. In this way, the NSI-strip improved the qualitative presence/absence detection of traditional strips by measuring the content (range) of target analytes semiquantitatively.  相似文献   

18.
Here, we describe a new approach for electrochemiluminescence (ECL) assay with Ru(bpy)32+-encapsulated silica nanoparticle (SiO2@Ru) as labels. A water-in-oil (W/O) microemulsion method was employed for one-pot synthesis of SiO2@Ru nanoparticles. The as-synthesized SiO2@Ru nanoparticles have a narrow size distribution, which allows reproducible loading of Ru(bpy)32+ inside the silica shell and of α-fetoprotein antibody (anti-AFP), a model antibody, on the silica surface with glutaraldehyde as linkage. The silica shell effectively prevents leakage of Ru(bpy)32+ into the aqueous solution due to strong electrostatic interaction between the positively charged Ru(bpy)32+ and the negatively charged surface of silica. The porous structure of silica shell allowed the ion to move easily through the pore to exchange energy/electrons with the entrapped Ru(bpy)32+. The as-synthesized SiO2@Ru can be used as a label for ultrasensitive detection of biomarkers through a sandwiched immunoassay process. The calibration range of AFP concentration was 0.05-30 ng mL−1 with linear relation from 0.05 to 20 ng mL−1 and a detection limit of 0.035 ng mL−1 at 3σ. The resulting immunosensors possess high sensitivity and good analytical performance.  相似文献   

19.
Fu S  Liu Z  Liu S  Liu J  Yi A 《Analytica chimica acta》2007,599(2):271-278
In pH 2.8-3.8 BR buffer medium, the third generation cephalosporin antibiotics (TGCs) such as ceftazidime (CZD), ceftriaxone (CTRX), cefoperazone (CPZ), and cefotaxime (CFTM) react with palladium(II) (Pd(II)) to form 1:2 yellowish-brown cationic chelates, which further react with 4, 5-dibromofluorescein (DBF) to form 1:3 brown ion-association complexes. As a result, not only the spectra of absorption and fluorescence are changed, but also the resonance Rayleigh scattering (RRS) is enhanced greatly and the new RRS spectra are observed. The four TGCs products have similar spectral characteristics and their maximum RRS wavelengths are all located at 291 nm. The quantitative determination ranges and the detection limits of the four TGCs are 0.0065-1.0 μg mL−1 and 2.0 ng mL−1 for CZD, 0.0070-1.1 μg mL−1 and 2.2 ng mL−1 for CTRX, 0.0090-1.6 μg mL−1 and 2.7 ng mL−1 for CPZ, and 0.014-2.2 μg mL−1 and 4.2 ng mL−1 for CFTM, respectively. The optimum conditions of the reactions and the effects of foreign substances are investigated, and the composition of ion-association complexes is discussed also. Based on the ion-association reaction, a highly sensitive, simple and rapid method has been proposed to the determination of TGCs.  相似文献   

20.
In the present work a method for the determination of mercury at trace levels by energy dispersive X-ray fluorescence (EDXRF) is introduced. Mercury ions were concentrated on cation selective membranes that have been prepared on Mylar® thin film substrate, immobilized on plastic cups. The produced membranes were immersed in water solutions containing low concentrations of mercury. The membranes were left to equilibrate in 1000 mL of mercury solutions and were analyzed by EDXRF. The effects of various experimental parameters were examined. Minimum detection limits of pg mL−1 (ppt) (0.069 ng mL−1 for ASTM Type I water and 0.064 ng mL−1 for seawater) and good linearity were achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号