首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lysine‐based polypeptides can be afforded with steerable secondary structures and tunable thermoresponsiveness through dynamic covalent OEGylation. These polypeptides were formed through dynamic imine linkage via reactions of amino moieties from poly(l ‐lysine)s with aldehydes from oligoethylene glycol (OEG)‐based dendrons. In addition to solution concentrations and pH values, macromolecular effect was found to play an important role on the imine formation. OEGylated polypeptides showed characteristic thermoresponsive properties, and their phase transition temperatures were governed predominately by terminal groups and the coverage of OEG dendrons. Notably, thermally induced aggregation would enhance the imine formation even at elevated temperature. In contrast to the covalent polypeptide representatives, the dynamic covalent polypeptides conveyed different thermoresponsiveness due to imine linkages, and their phase transition temperatures could be tuned simply by varying ratios of OEG dendrons with different hydrophilicity. Furthermore, helical conformation of these polypeptides was enhanced with attachment of OEG dendrons, and could be reversibly switched through thermally induced aggregation. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 33–41  相似文献   

2.
N‐alkyl and N‐aryl imines have been frequently used as directing groups in rhodium‐ and cobalt‐catalyzed hydroarylation reactions of olefins and alkynes. However, the scope of such hydroarylation reactions has been limited by the difficulty of preparation of sterically hindered imines by condensation, and also by the steric bulkiness of the imine group itself. Reported herein is that an N?H imine serves as an alternative and highly effective directing group for cobalt‐catalyzed hydroarylation of olefins, and unlocks many of the limitations associated with the previously employed N‐aryl imine directing group. The power of this minimal nitrogen directing group is manifested in a fourfold ortho alkylation of benzophenone imine, and it occurs rapidly at ambient temperature.  相似文献   

3.
The first example of a bifunctional organocatalyst assembled through dynamic covalent chemistry (DCC) is described. The catalyst is based on reversible imine chemistry and can catalyze the Morita–Baylis–Hillman (MBH) reaction of enones with aldehydes or N‐tosyl imines. Furthermore, these dynamic catalysts were shown to be optimizable through a systemic screening approach, in which large mixtures of catalyst structures were generated, and the optimal catalyst could be directly identified by using dynamic deconvolution. This strategy allowed one‐pot synthesis and in situ evaluation of several potential catalysts without the need to separate, characterize, and purify each individual structure. The systems were furthermore shown to catalyze and re‐equilibrate their own formation through a previously unknown thiourea‐catalyzed transimination process.  相似文献   

4.
Primary and secondary amines can be rapidly and quantitatively oxidized to the corresponding imines by singlet oxygen. This reactive form of oxygen was produced using a variable‐temperature continuous‐flow LED‐photoreactor with a catalytic amount of tetraphenylporphyrin as the sensitizer. α‐Aminonitriles were obtained in good to excellent yields when trimethylsilyl cyanide served as an in situ imine trap. At 25°C, primary amines were found to undergo oxidative coupling prior to cyanide addition and yielded secondary α‐aminonitriles. Primary α‐aminonitriles were synthesized from the corresponding primary amines for the first time, by an oxidative Strecker reaction at –50 °C. This atom‐economic and protecting‐group‐free pathway provides a route to racemic amino acids, which was exemplified by the synthesis of tert‐leucine hydrochloride from neopentylamine.  相似文献   

5.
Quantitatively predicting the reactivity of dynamic covalent reaction is essential to understand and rationally design complex structures and reaction networks. Herein, the reactivity of aldehydes and amines in various rapid imine formation in aqueous solution by microfluidic NMR spectroscopy was quantified. Investigation of reaction kinetics allowed to quantify the forward rate constants k+ by an empirical equation, of which three independent parameters were introduced as reactivity parameters of aldehydes (SE, E) and amines (N). Furthermore, these reactivity parameters were successfully used to predict the unknown forward rate constants of imine formation. Finally, two competitive reaction networks were rationally designed based on the proposed reactivity parameters. Our work has demonstrated the capability of microfluidic NMR spectroscopy in quantifying the kinetics of label-free chemical reactions, especially rapid reactions that are complete in minutes.  相似文献   

6.
Reactive interaction of aromatic amines with dialdehyde cellulose gel   总被引:5,自引:1,他引:4  
A new chromatographic method was developed for separation of amines based on their interaction with aldehyde groups in stationary phase. Expecting specific interaction with aldehyde groups through imine formation (Schiff base), we introduced dialdehyde groups to a commercial cellulose packing by periodate oxidation and examined eluting behavior of various aromatic amines. Primary amines with acid dissociation constants (pKa) greater than 6 showed no delay at pHs of 4.0–5.5, indicating the lack of interaction because of complete protonation. Primary amines with pKa less than 6 showed remarkable delays according to the amount of aldehyde groups on cellulose. The delay was dependent on the pH of eluent. The amines with pKa of 4–5.3 eluted faster at lower pH, apparently because of the change in proportion of free and protonated species. Amines with pKa less than 3.4 also showed delays but they eluted slower at lower pH. The latter behavior can be ascribed to the change in the ratio of free/protonated species of imines formed. Certain degree of steric effect was also noted, that is, compounds with a primary amino group adjacent to bulky substituents (ortho compounds) showed weaker interaction with aldehyde groups than meta- and para-isomers.  相似文献   

7.
Axial chirality is a prevalent and important phenomenon in chemistry. Herein we report a combination of dynamic covalent chemistry and axial chirality for the development of a versatile platform for the binding and chirality sensing of multiple classes of mononucleophiles. An equilibrium between an open aldehyde and its cyclic hemiaminal within biphenyl derivatives enabled the dynamic incorporation of a broad range of alcohols, thiols, primary amines, and secondary amines with high efficiency. Selectivity toward different classes of nucleophiles was also achieved by regulating the distinct reactivity of the system with external stimuli. Through induced helicity as a result of central‐to‐axial chirality transfer, the handedness and ee values of chiral monoalcohol and monoamine analytes were reported by circular dichroism. The strategies introduced herein should find application in many contexts, including assembly, sensing, and labeling.  相似文献   

8.
Comb‐like polymers carrying two elastin‐like polypeptide (ELP) pendants in each repeat unit were synthesized. The densely attached peptide chains afford these polymers with sharp thermally induced phase transitions, and their lower critical solution temperature (LCST) can be varied with molecular weights, solution pH and salt concentrations. Through amino terminals in ELP pendants, oligoethylene glycol (OEG)‐based dendrons cored with aldehyde were attached to the polymers through dynamic covalent imines. By virtue of dynamic characteristics of these novel dendronized polymers, their LCSTs can be tuned significantly by dendron coverage to shift from that dominated by ELPs to that dominated by OEG dendrons. Furthermore, dendron coverage can be enhanced obviously by the thermally induced phase transitions or greatly by freezing the polymer aqueous solutions. The work provides a convenient methodology to improve thermoresponsiveness of ELPs through polymer topology and to switch their properties through dynamic covalent chemistry. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3379–3387  相似文献   

9.
The reversibly formed C?N bond plays a very important role in dynamic covalent chemistry and the C?N/C?N exchange of components between different imine constituents to create dynamic covalent libraries has been extensively used. To facilitate diversity generation, we have investigated an organocatalyzed approach, using L ‐proline as catalyst, to accelerate the formation of dynamic libraries of [n×n] imine components. The organocatalysis methodology has also been extended, under somewhat modified conditions, to reversible C?C/C?N exchange processes between Knoevenagel derivatives of barbituric acid and imines, allowing for the generation of increased diversity.  相似文献   

10.
This Highlight presents an overview of the rapidly growing field of dynamic covalent polymers. This class of polymers combines intrinsic reversibility with the robustness of covalent bonds, thus enabling formation of mechanically stable, polymer‐based materials that are responsive to external stimuli. It will be discussed how the inherent dynamic nature of the dynamic covalent bonds on the molecular level can be translated to the macroscopic level of the polymer, giving access to a range of applications, such as stimuli‐responsive or self‐healing materials. A primary distinction will be made based on the type of dynamic covalent bond employed, while a secondary distinction will be based on the consideration whether the dynamic covalent bond is used in the main chain of the polymer or whether it is used to allow side chain modification of the polymer. Emphasis will be on the chemistry of the dynamic covalent bonds present in the polymer, in particular in relation to how the specific (dynamic) features of the bond impart functionality to the polymer material, and to the conditions under which this dynamic behavior is manifested. © 2016 The Authors. Journal of Polymer Science Part A: Polymer Chemistry Published by Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3551–3577.  相似文献   

11.
Imines are important intermediates for the synthesis of fine chemicals, pharmaceuticals, and agricultural chemicals. Selective oxidation of amines into their corresponding imines with dioxygen is one of the most‐fundamental chemical transformations. Herein, we report the oxidation of a series of benzylic amines into their corresponding imines with atmospheric dioxygen as the oxidant on a surface of anatase TiO2 under visible‐light irradiation (λ>420 nm). The visible‐light response of this system was caused by the formation of a surface complex through the adsorption of a benzylic amine onto the surface of TiO2. From the analysis of products of specially designed benzylic amines, we demonstrated that a highly selective oxygenation reaction proceeds via an oxygen‐transfer mechanism to afford the corresponding carbonyl compound, whose further condensation with an amine would generate the final imine product. We found that when primary benzylic amines (13 examples), were chosen as the substrates, moderate to excellent selectivities for the imine products were achieved (ca. 38–94 %) in moderate to excellent conversion rates (ca. 44–95 %). When secondary benzylic amines (15 examples) were chosen as the substrates, both the corresponding imines and aldehydes were detected as the main products with moderate to high conversion rates (ca. 18–100 %) and lower selectivities for the imine products (ca. 14–69 %). When tribenzylamine was chosen as the substrate, imine (27 %), dibenzylamine (24 %), and benzaldehyde products (39 %) were obtained in a conversion of 50 %. This report can be viewed as a prototypical system for the activation of C? H bonds adjacent to heteroatoms such as N, O, and S atoms, and oxofuctionalization with air or dioxygen as the terminal oxidant under visible‐light irradiation using TiO2 as the photocatalyst.  相似文献   

12.
Application of an electric field to liquid crystalline film forming imines with negative dielectric anisotropy, such as N‐(4‐methoxybenzylidene)‐4‐butylaniline (MBBA, 1 ), results in the expulsion of compounds that do not participate in the formation of the liquid crystalline phase. Furthermore, amines and aromatic aldehydes undergo component exchange with the imine by generating constitutional dynamic libraries. The strength of the electric field and the duration of its application to the liquid crystalline film influence the release rate of the expelled compounds and, at the same time, modulate the equilibration of the dynamic libraries. The controlled release of volatile organic molecules with different chemical functionalities from the film was quantified by dynamic headspace analysis. In all cases, higher headspace concentrations were detected in the presence of an electric field. These results point to the possibility of using imine‐based liquid crystalline films to build devices for the controlled release of a broad variety of bioactive volatiles as a direct response to an external electric signal.  相似文献   

13.
Versatile syntheses of secondary and tertiary amines by highly efficient direct N‐alkylation of primary and secondary amines with alcohols or by deaminative self‐coupling of primary amines have been successfully realized by means of a heterogeneous bimetallic Pt–Sn/γ‐Al2O3 catalyst (0.5 wt % Pt, Pt/Sn molar ratio=1:3) through a borrowing‐hydrogen strategy. In the presence of oxygen, imines were also efficiently prepared from the tandem reactions of amines with alcohols or between two primary amines. The proposed mechanism reveals that an alcohol or amine substrate is initially dehydrogenated to an aldehyde/ketone or NH‐imine with concomitant formation of a [PtSn] hydride. Condensation of the aldehyde/ketone species or deamination of the NH‐imine intermediate with another molecule of amine forms an N‐substituted imine which is then reduced to a new amine product by the in‐situ generated [PtSn] hydride under a nitrogen atmosphere or remains unchanged as the final product under an oxygen atmosphere. The Pt–Sn/γ‐Al2O3 catalyst can be easily recycled without Pt metal leaching and has exhibited very high catalytic activity toward a wide range of amine and alcohol substrates, which suggests potential for application in the direct production of secondary and tertiary amines and N‐substituted imines.  相似文献   

14.
Bioorthogonal reactions that are fast and reversible under physiological conditions are in high demand for biological applications. Herein, it is shown that an ortho boronic acid substituent makes aryl ketones rapidly conjugate with α‐nucleophiles at neutral pH. Specifically, 2‐acetylphenylboronic acid and derivatives were found to conjugate with phenylhydrazine with rate constants of 102 to 103 M ?1 s?1, comparable to the fastest bioorthogonal conjugations known to date. 11B NMR analysis revealed the varied extent of iminoboronate formation of the conjugates, in which the imine nitrogen forms a dative bond with boron. The iminoboronate formation activates the imines for hydrolysis and exchange, rendering these oxime/hydrazone conjugations reversible and dynamic under physiological conditions. The fast and dynamic nature of the iminoboronate chemistry should find wide applications in biology.  相似文献   

15.
Knoevenagel barbiturate derivatives and imines are able to undergo efficient component recombination through dynamic covalent C=C/C=N organo-metathesis in absence of a catalyst. A [2×2] dynamic covalent library (DCL) containing two Knoevenagel derivatives Kn1 and Kn2 and two imines A1 and A2 has been established and its adaptive features in response to the addition of metal cations have been investigated. Addition of Cu(I) triflate as an effector, induces fast and remarkable constitutional selection of the DCL towards amplification of the Cu(I)- A2 complex and its agonist Kn1 . This adaptation process could be reversed by addition of neocuproine as a competitive Cu(I) ligand. Furthermore, separate addition of five other metal cations as input agents, i. e. Ag(I), Fe(II), Zn(II), Cu(II) and Li(I), led to the generation of cation-specific distribution patterns as outputs, showing the ability of the present DCL to recognize different effectors.  相似文献   

16.
The direct oxidative cross‐coupling of primary amines is a challenging transformation as homocoupling is usually preferred. We report herein the chemoselective preparation of cross‐coupled imines through the synergistic combination of low loadings of CuII metal‐catalyst and o‐iminoquinone organocatalyst under ambient conditions. This homogeneous cooperative catalytic system has been inspired by the reaction of copper amine oxidases, a family of metalloenzymes with quinone organic cofactors that mediate the selective oxidation of primary amines to aldehydes. After optimization, the desired cross‐coupled imines are obtained in high yields with broad substrate scope through a transamination process that leads to the homocoupled imine intermediate, followed by dynamic transimination. The ability to carry out the reactions at room temperature and with ambient air, rather than molecular oxygen as the oxidant, and equimolar amounts of each coupling partner is particularly attractive from an environmentally viewpoint.  相似文献   

17.
利用生物来源的二聚脂肪酸为原料,合成了二聚酸酰肼和二聚酸酰腙两种衍生物,并进一步以其作为环氧E-44树脂固化剂,得到了新型的含动态共价连接的热固性环氧树脂。采用傅里叶红外光谱(FT-IR)、差式扫描量热(DSC)、扫描电子显微镜(SEM)、热重(TG)和动态力学分析(DMA)等多种测试手段对环氧树脂固化过程以及固化后材料的结构与性能关系进行了详细表征,特别研究了动态亚胺键对热固性环氧树脂性能的独特影响。结果表明:与传统环氧树脂相比,改性后的环氧树脂有更好的韧性,且其玻璃化转变温度及热稳定性没有明显下降。在升温和加压的条件下,酸可催化亚胺键的动态交换反应,赋予传统环氧树脂以全新的可修复、可回收与可多次加工性能。  相似文献   

18.
A two‐dimensional covalent organic monolayer was synthesized from simple aromatic triamine and dialdehyde building blocks by dynamic imine chemistry at the air/water interface (Langmuir–Blodgett method). The obtained monolayer was characterized by optical microscopy, scanning electron microscopy, and atomic force microscopy, which unambiguously confirmed the formation of a large (millimeter range), unimolecularly thin aromatic polyimine sheet. The imine‐linked chemical structure of the obtained monolayer was characterized by tip‐enhanced Raman spectroscopy, and the peak assignment was supported by spectra simulated by density functional theory. Given the modular nature and broad substrate scope of imine formation, the work reported herein opens up many new possibilities for the synthesis of customizable 2D polymers and systematic studies of their structure–property relationships.  相似文献   

19.
A new series of shape‐persistent imine‐bridged macrocycles were synthesized based on dynamic covalent chemistry. The macrocycles had an alternating sequence of dibenzothiophene and N,N′‐bis(salicylidene)‐ethylenediamine (salen) tethering branched alkyl chains. The macrocycles and tetranuclear metallomacrocycles bearing long and branched alkyl chains exhibited thermotropic columnar liquid‐crystalline phases over a wide temperature range and the metallomacrocycles greatly depended on the characteristics of the coordinated metal ions. The metal‐free macrocycle showed a liquid‐crystalline phase with a lamellar structure and poor birefringence. In sharp contrast, the macrocyclic Ni complex showed a columnar oblique liquid‐crystalline phase, whereas the Pd and Cu complexes showed columnar liquid‐crystalline phases with a lamellar structure. The macroscopic organization and thermal properties of the corresponding liquid‐crystalline metallomacrocycles were significantly dependent on the subtle structural differences among the planar macrocycles, which were revealed by single‐crystal X‐ray crystallographic analysis of the macrocycles with shorter alkyl chains.  相似文献   

20.
Wendlandt AE  Stahl SS 《Organic letters》2012,14(11):2850-2853
Biomimetic aerobic oxidation of primary benzylic amines has been achieved by using a quinone catalyst. Excellent selectivity is observed for primary, unbranched benzylic amines relative to secondary/tertiary amines, branched benzylic amines, and aliphatic amines. The exquisite selectivity for benzylic amines enables oxidative self-sorting within dynamic mixtures of amines and imines to afford high yields of cross-coupled imine products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号