首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
2.
G‐quadruplex DNA show structural polymorphism, leading to challenges in the use of selective recognition probes for the accurate detection of G‐quadruplexes in vivo. Herein, we present a tripodal cationic fluorescent probe, NBTE , which showed distinguishable fluorescence lifetime responses between G‐quadruplexes and other DNA topologies, and fluorescence quantum yield (Φf) enhancement upon G‐quadruplex binding. We determined two NBTE ‐G‐quadruplex complex structures with high Φf values by NMR spectroscopy. The structures indicated NBTE interacted with G‐quadruplexes using three arms through π–π stacking, differing from that with duplex DNA using two arms, which rationalized the higher Φf values and lifetime response of NBTE upon G‐quadruplex binding. Based on photon counts of FLIM, we detected the percentage of G‐quadruplex DNA in live cells with NBTE and found G‐quadruplex DNA content in cancer cells is 4‐fold that in normal cells, suggesting the potential applications of this probe in cancer cell detection.  相似文献   

3.
The interactions of a series of platinum(II) Schiff base complexes with c‐myc G‐quadruplex DNA were studied. Complex [PtL 1a ] ( 1 a ; H2L 1a =N,N′‐bis(salicylidene)‐4,5‐methoxy‐1,2‐phenylenediamine) can moderately inhibit c‐myc gene promoter activity in a cell‐free system through stabilizing the G‐quadruplex structure and can inhibit c‐myc oncogene expression in cultured cells. The interaction between 1 a and G‐quadruplex DNA has been examined by 1H NMR spectroscopy. By using computer‐aided structure‐based drug design for hit‐to‐lead optimization, an in silico G‐quadruplex DNA model has been constructed for docking‐based virtual screening to develop new platinum(II) Schiff base complexes with improved inhibitory activities. Complex [PtL 3 ] ( 3 ; H2L 3 = N,N′‐bis{4‐[1‐(2‐propylpiperidine)oxy]salicylidene}‐4,5‐methoxy‐1,2‐phenylenediamine) has been identified with a top score in the virtual screening. This complex was subsequently prepared and experimentally tested in vitro for its ability to stabilize or induce the formation of the c‐myc G‐quadruplex. The inhibitory activity of 3 (IC50=4.4 μM ) is tenfold more than that of 1 a . The interaction between 1 a or 3 with c‐myc G‐quadruplex DNA has been examined by absorption titration, emission titration, molecular modeling, and NMR titration experiments, thus revealing that both 1 a and 3 bind c‐myc G‐quadruplex DNA through an external end‐stacking mode at the 3’ terminal face of the G‐quadruplex. Such binding of G‐quadruplex DNA with 3 is accompanied by up to an eightfold increase in the intensity of photoluminescence at λmax=652 nm. Complex 3 also effectively down‐regulated the expression of c‐myc in human hepatocarcinoma cells.  相似文献   

4.
Telomeric G‐quadruplexes have recently emerged as drug targets in cancer research. Herein, we present the first NMR structure of a telomeric DNA G‐quadruplex that adopts the biologically relevant hybrid‐2 conformation in a ligand‐bound state. We solved the complex with a metalorganic gold(III) ligand that stabilizes G‐quadruplexes. Analysis of the free and bound structures reveals structural changes in the capping region of the G‐quadruplex. The ligand is sandwiched between one terminal G‐tetrad and a flanking nucleotide. This complex structure involves a major structural rearrangement compared to the free G‐quadruplex structure as observed for other G‐quadruplexes in different conformations, invalidating simple docking approaches to ligand–G‐quadruplex structure determination.  相似文献   

5.
A series of platinum(II) complexes with tridentate ligands was synthesized and their interactions with G‐quadruplex DNA within the c‐myc gene promoter were evaluated. Complex 1 , which has a flat planar 2,6‐bis(benzimidazol‐2‐yl)pyridine (bzimpy) scaffold, was found to stabilize the c‐myc G‐quadruplex structure in a cell‐free system. An in silico G‐quadruplex DNA model has been constructed for structure‐based virtual screening to develop new PtII‐based complexes with superior inhibitory activities. By using complex 1 as the initial structure for hit‐to‐lead optimization, bzimpy and related 2,6‐bis(pyrazol‐3‐yl)pyridine (dPzPy) scaffolds containing amine side‐chains emerge as the top candidates. Six of the top‐scoring complexes were synthesized and their interactions with c‐myc G‐quadruplex DNA have been investigated. The results revealed that all of the complexes have the ability to stabilize the c‐myc G‐quadruplex. Complex 3 a ([PtII L2R ] + ; L2 =2,6‐bis[1‐(3‐piperidinepropyl)‐1H‐enzo[d]imidazol‐2‐yl]pyridine, R =Cl) displayed the strongest inhibition in a cell‐free system (IC50=2.2 μM ) and was 3.3‐fold more potent than that of 1 . Complexes 3 a and 4 a ([PtII L3R ]+; L3 =2,6‐bis[1‐(3‐morpholinopropyl)‐1H‐pyrazol‐3‐yl]pyridine, R =Cl) were found to effectively inhibit c‐myc gene expression in human hepatocarcinoma cells with IC50 values of ≈17 μM , whereas initial hit 1 displayed no significant effect on gene expression at concentrations up to 50 μM . Complexes 3 a and 4 a have a strong preference for G‐quadruplex DNA over duplex DNA, as revealed by competition dialysis experiments and absorption titration; 3 a and 4 a bind G‐quadruplex DNA with binding constants (K) of approximately 106–107 dm3 mol?1, which are at least an order of magnitude higher than the K values for duplex DNA. NMR spectroscopic titration experiments and molecular modeling showed that 4 a binds c‐myc G‐quadruplex DNA through an external end‐stacking mode at the 3′‐terminal face of the G‐quadruplex. Intriguingly, binding of c‐myc G‐quadruplex DNA by 3 b is accompanied by an increase of up to 38‐fold in photoluminescence intensity at λmax=622 nm.  相似文献   

6.
Mechanical anisotropy is an essential property for biomolecules to assume structural and functional roles in mechanobiology. However, there is insufficient information on the mechanical anisotropy of ligand–biomolecule complexes. Herein, we investigated the mechanical property of individual human telomeric G‐quadruplexes bound to telomestatin, using optical tweezers. Stacking of the ligand to the G‐tetrad planes changes the conformation of the G‐quadruplex, which resembles a balloon squeezed in certain directions. Such a squeezed balloon effect strengthens the G‐tetrad planes, but dislocates and weakens the loops in the G‐quadruplex upon ligand binding. These dynamic interactions indicate that the binding between the ligand and G‐quadruplex follows the induced‐fit model. We anticipate that the altered mechanical anisotropy of the ligand–G‐quadruplex complex can add additional level of regulations on the motor enzymes that process DNA or RNA molecules.  相似文献   

7.
A knot‐like G‐quadruplex peripheral structure is formed by a 7‐nt DNA sequence DL7 (TGTTGGT), in which six out of its seven nucleobases participate in compact base‐pairing interactions. Here, the solution NMR structure of a 24‐nt DNA oligonucleotide containing the DL7 sequence shows the interaction between a two‐layer anti‐parallel G‐quadruplex core and the peripheral knot‐like structure, including the construction of two sharp turns in the DNA backbone. The formation of this novel structural element highlights the intricate properties of single‐stranded DNA folding in presence of G‐quadruplex‐forming motifs. We demonstrated the compatibility of the DL7 knot‐like structure with various G‐quadruplexes, which could have implications in drug design and DNA engineering.  相似文献   

8.
A new biomolecular device for investigating the interactions of ligands with constrained DNA quadruplex topologies, using surface plasmon resonance (SPR), is reported. Biomolecular systems containing an intermolecular‐like G‐quadruplex motif 1 (parallel G‐quadruplex conformation), an intramolecular G‐quadruplex 2 , and a duplex DNA 3 have been designed and developed. The method is based on the concept of template‐assembled synthetic G‐quadruplex (TASQ), whereby quadruplex DNA structures are assembled on a template that allows precise control of the parallel G‐quadruplex conformation. Various known G‐quadruplex ligands have been used to investigate the affinities of ligands for intermolecular 1 and intramolecular 2 DNA quadruplexes. As anticipated, ligands displaying a π‐stacking binding mode showed a higher binding affinity for intermolecular‐like G‐quadruplexes 1 , whereas ligands with other binding modes (groove and/or loop binding) showed no significant difference in their binding affinities for the two quadruplexes 1 or 2 . In addition, the present method has also provided information about the selectivity of ligands for G‐quadruplex DNA over the duplex DNA. A numerical parameter, termed the G‐quadruplex binding mode index (G4‐BMI), has been introduced to express the difference in the affinities of ligands for intermolecular G‐quadruplex 1 against intramolecular G‐quadruplex 2 . The G‐quadruplex binding mode index (G4‐BMI) of a ligand is defined as follows: G4‐BMI=KDintra/KDinter, where KDintra is the dissociation constant for intramolecular G‐quadruplex 2 and KDinter is the dissociation constant for intermolecular G‐quadruplex 1 . In summary, the present work has demonstrated that the use of parallel‐constrained quadruplex topology provides more precise information about the binding modes of ligands.  相似文献   

9.
The interactions of three cationic distyryl dyes, namely 2,4‐bis(4‐dimethylaminostyryl)‐1‐methylpyridinium ( 1 a ), its derivative with a quaternary aminoalkyl chain ( 1 b ), and the symmetric 2,6‐bis(4‐dimethylaminostyryl)‐1‐methylpyridinium ( 2 a ), with several quadruplex and duplex nucleic acids were studied with the aim to establish the influence of the geometry of the dyes on their DNA‐binding and DNA‐probing properties. The results from spectrofluorimetric titrations and thermal denaturation experiments provide evidence that asymmetric (2,4‐disubstituted) dyes 1 a and 1 b bind to quadruplex DNA structures with a near‐micromolar affinity and a fair selectivity with respect to double‐stranded (ds) DNA [Ka(G4)/Ka(ds)=2.5–8.4]. At the same time, the fluorescence of both dyes is selectively increased in the presence of quadruplex DNAs (more than 80–100‐fold in the case of human telomeric quadruplex), even in the presence of an excess of competing double‐stranded DNA. This optical selectivity allows these dyes to be used as quadruplex‐DNA‐selective probes in solution and stains in polyacrylamide gels. In contrast, the symmetric analogue 2 a displays a strong binding preference for double‐stranded DNA [Ka(ds)/Ka(G4)=40–100), presumably due to binding in the minor groove. In addition, 2 a is not able to discriminate between quadruplex and duplex DNA, as its fluorescence is increased equally well (20–50‐fold) in the presence of both structures. This study emphasizes and rationalizes the strong impact of subtle structural variations on both DNA‐recognition properties and fluorimetric response of organic dyes.  相似文献   

10.
Natural G‐quartets, a cyclic and coplanar array of four guanine residues held together through a Watson–Crick/Hoogsteen hydrogen‐bond network, have received recently much attention due to their involvement in G‐quadruplex DNA, an alternative higher‐order DNA structure strongly suspected to play important roles in key cellular events. Besides this, synthetic G‐quartets (SQ), which artificially mimic native G‐quartets, have also been widely studied for their involvement in nanotechnological applications (i.e., nanowires, artificial ion channels, etc.). In contrast, intramolecular synthetic G‐quartets (iSQ), also named template‐assembled synthetic G‐quartets (TASQ), have been more sparingly investigated, despite a technological potential just as interesting. Herein, we report on a particular iSQ named PNADOTASQ, which demonstrates very interesting properties in terms of DNA and RNA interaction (notably its selective recognition of quadruplexes according to a bioinspired process) and catalytic activities, through its ability to perform peroxidase‐like hemin‐mediated oxidations either in an autonomous fashion (i.e., as pre‐catalyst for TASQzyme reactions) or in conjunction with quadruplex DNA (i.e., as enhancing agents for DNAzyme processes). These results provide a solid scientific basis for TASQ to be used as multitasking tools for bionanotechnological applications.  相似文献   

11.
Phen‐DC3 is a highly promising compound that specifically targets G‐quadruplexes, with potent biological effects observed in vivo. We used NMR spectroscopy to solve the structure of the complex formed between Phen‐DC3 and an intramolecular G‐quadruplex derived from the c‐myc promoter. Structural information revealed that Phen‐DC3 interacts with the quadruplex through extensive π‐stacking with guanine bases of the top G‐tetrad. On the basis of our structure, modifications are proposed for the development of this compound for selective targeting of a specific G‐quadruplex conformation.  相似文献   

12.
G‐quadruplex DNA plays an important role in the potential therapeutic target for the design and development of anticancer drugs. As various G‐quadruplex sequences in the promoter regions or telomeres can form different secondary structural modes and display a diversity of biology functions, variant G‐quadruplex interactive agents may be necessary to cure different disease by differentiating variant types of G‐quadruplexes. We synthesize five cationic methylpyridylium corroles and compare the interactions of corroles with different types of G‐quadruplexes such as cmyc, htelo, and bcl2 by using surface plasmon resonance. Because of the importance of human telomere G‐quadruplex DNA, we focus on the biological properties of the interactions between human telomere G‐quadruplex DNA and corrole isomers using CD, Tm, PCR‐stop (PCR= polymerase chain reaction), and polymerase‐stop assay, which demonstrate the excellent ability of the corrole to induce and stabilize the G‐quadruplex. This study provides the first experimental insight into how selectivity might be achieved for different G‐quadruplexes by a single group of methylpyridylium corrole isomers that may be optimized for potential selective cancer therapy.  相似文献   

13.
Human telomeres can form DNA G‐quadruplex (G4), an attractive target for anticancer drugs. Human telomeric G4s bear inherent structure polymorphism, challenging for understanding specific recognition by ligands or proteins. Protoberberines are medicinal natural‐products known to stabilize telomeric G4s and inhibit telomerase. Here we report epiberberine (EPI) specifically recognizes the hybrid‐2 telomeric G4 predominant in physiologically relevant K+ solution and converts other telomeric G4 forms to hybrid‐2, the first such example reported. Our NMR structure in K+ solution shows EPI binding induces extensive rearrangement of the previously disordered 5′‐flanking and loop segments to form an unprecedented four‐layer binding pocket specific to the hybrid‐2 telomeric G4; EPI recruits the (?1) adenine to form a “quasi‐triad” intercalated between the external tetrad and a T:T:A triad, capped by a T:T base pair. Our study provides structural basis for small‐molecule drug design targeting the human telomeric G4.  相似文献   

14.
Nucleic acids can adopt non‐duplex topologies, such as G‐quadruplexes in vitro. Yet it has been challenging to establish their existence and function in vivo due to a lack of suitable tools. Recently, we identified the triangulenium compound DAOTA‐M2 as a unique fluorescence probe for such studies. This probe's emission lifetime is highly dependent on the topology of the DNA it interacts with opening up the possibility of carrying out live‐cell imaging studies. Herein, we describe the origin of its fluorescence selectivity for G‐quadruplexes. Cyclic voltammetry predicts that the appended morpholino groups can act as intra‐ molecular photo‐induced electron transfer (PET) quenchers. Photophysical studies show that a delicate balance between this effect and inter‐molecular PET with nucleobases is key to the overall fluorescence enhancement observed upon nucleic acid binding. We utilised computational modelling to demonstrate a conformational dependence of intra‐molecular PET. Finally, we performed orthogonal studies with a triangulenium compound, in which the morpholino groups were removed, and demonstrated that this change inverts triangulenium fluorescence selectivity from G‐quadruplex to duplex DNA, thus highlighting the importance of fine tuning the molecular structure not only for target affinity, but also for fluorescence response.  相似文献   

15.
We have developed a straightforward synthetic pathway to a set of six photoactivatable G‐quadruplex ligands with a validated G4‐binding motif (the bisquinolinium pyridodicarboxamide PDC‐360A) tethered through various spacers to two different photo‐cross‐linking groups: benzophenone and an aryl azide. The high quadruplex‐versus‐duplex selectivity of the PDC core was retained in the new derivatives and resulted in selective alkylation of two well‐known G‐quadruplexes (human telomeric G4 and oncogene promoter c‐myc G4) under conditions of harsh competition. The presence of two structurally different photoactivatable functions allowed the selective alkylation of G‐quadruplex structures at specific nucleobases and irreversible G4 binding. The topology and sequence of the quadruplex matrix appear to influence strongly the alkylation profile, which differs for the telomeric and c‐myc quadruplexes. The new compounds are photoactive in cells and thus provide new tools for studying G4 biology.  相似文献   

16.
A new folding intermediate of Oxytricha nova telomeric Oxy‐1.5 G‐quadruplex was characterized in aqueous solution using NMR spectroscopy, native gel electrophoresis, thermal differential spectra (TDS), CD spectroscopy, and differential scanning calorimetry (DSC). NMR experiments have revealed that this intermediate (i‐Oxy‐1.5) exists in two symmetric bimolecular forms in which all guanine bases are involved in GG N1‐carbonyl symmetric base pairs. Kinetic analysis of K+‐induced structural transitions shows that folding of Oxy‐1.5 G‐quadruplex from i‐Oxy‐1.5 is much faster and proceeds through less intermediates than folding from single strands. Therefore, a new folding pathway of Oxy‐1.5 G‐quadruplex is proposed. This study provides evidence that G‐rich DNA sequences can self‐assemble into specific pre‐organized DNA structures that are predisposed to fold into G‐quadruplex when interacting with cations such as potassium ions.  相似文献   

17.
Recently, we observed the first example of a left‐handed G‐quadruplex structure formed by natural DNA, named Z‐G4. We analysed the Z‐G4 structure and inspected its primary 28‐nt sequence in order to identify motifs that convey the unique left‐handed twist. Using circular dichroism spectroscopy, NMR spectroscopy, and X‐ray crystallography, we revealed a minimal sequence motif of 12 nt (GTGGTGGTGGTG) for formation of the left‐handed DNA G‐quadruplex, which is found to be highly abundant in the human genome. A systematic analysis of thymine loop mutations revealed a moderate sequence tolerance, which would further broaden the space of sequences prone to left‐handed G‐quadruplex formation.  相似文献   

18.
G‐quadruplex (G4) structures are of general importance in chemistry and biology, such as in biosensing, gene regulation, and cancers. Although a large repertoire of G4‐binding tools has been developed, no aptamer has been developed to interact with G4. Moreover, the G4 selectivity of current toolkits is very limited. Herein, we report the first l ‐RNA aptamer that targets a d ‐RNA G‐quadruplex (rG4). Using TERRA rG4 as an example, our results reveal that this l ‐RNA aptamer, Ap3‐7, folds into a unique secondary structure, exhibits high G4 selectivity and effectively interferes with TERRA‐rG4–RHAU53 binding. Our approach and findings open a new door in further developing G4‐specific tools for diverse applications.  相似文献   

19.
Small molecules are used in the G‐quadruplex (G4) research field in vivo and in vitro, and there are increasing demands for ligands that selectively stabilize different G4 structures. Thioflavin T (ThT) emits an enhanced fluorescence signal when binding to G4 structures. Herein, we show that ThT can be competitively displaced by the binding of small molecules to G4 structures and develop a ThT‐displacement high‐throughput screening assay to find novel and selective G4‐binding compounds. We screened approximately 28 000 compounds by using three different G4 structures and identified eight novel G4 binders. Analysis of the structural conformation and stability of the G4 structures in presence of these compounds demonstrated that the four compounds enhance the thermal stabilization of the structures without affecting their structural conformation. In addition, all four compounds also increased the G4‐structure block of DNA synthesis by Taq DNA polymerase. Also, two of these compounds showed selectivity between certain Schizosaccharomyces pombe G4 structures, thus suggesting that these compounds or their analogues can be used as selective tools for G4 DNA studies.  相似文献   

20.
A unimolecular G‐quadruplex with a hybrid‐type topology and propeller, diagonal, and lateral loops was examined for its ability to undergo structural changes upon specific modifications. Substituting 2′‐deoxy‐2′‐fluoro analogues with a propensity to adopt an anti glycosidic conformation for two or three guanine deoxyribonucleosides in syn positions of the 5′‐terminal G‐tetrad significantly alters the CD spectral signature of the quadruplex. An NMR analysis reveals a polarity switch of the whole tetrad with glycosidic conformational changes detected for all four guanine nucleosides in the modified sequence. As no additional rearrangement of the overall fold occurs, a novel type of G‐quadruplex is formed with guanosines in the four columnar G‐tracts lined up in either an all‐syn or an all‐anti glycosidic conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号