首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
A vibrational Raman optical activity (ROA) study, supplemented by protein X-ray crystal structure data, of alpha-helices in polypeptides, proteins, and viruses has suggested that ROA bands in the extended amide III spectral region may be used to distinguish between two types of right-handed alpha-helix. One type, associated with a positive ROA band at approximately 1300 cm(-1), dominates in hydrophobic environments and appears to be unhydrated; the other, associated with a positive ROA band at approximately 1340 cm(-1), dominates in hydrophilic environments and appears to be hydrated. Evidence is presented to support the hypothesis that unhydrated alpha-helix corresponds to the canonical conformation alpha(c) and hydrated alpha-helix to a more open conformation alpha(o) stabilized by hydrogen bonding of a water molecule or a hydrophilic side chain to the peptide carbonyl. Alpha-helical poly(L-lysine) and poly(L-ornithine) in aqueous solution and poly(L-alanine) in dichloracetic acid display both bands, but alpha-helical poly(l-glutamic acid) in aqueous solution and poly(gamma-benzyl L-glutamate) in CHCl(3) display only the approximately 1340 cm(-1) band and so may exist purely as alpha(o) due to enhanced stabilization of this conformation by particular side chain characteristics. The ROA spectrum of poly(beta-benzyl L-aspartate) in CHCl(3) reveals that it exists in a single left-handed alpha-helical state more analogous to alpha(o) than to alpha(c).  相似文献   

2.
The Raman optical activity (ROA) spectra of proteins show distinct patterns arising from the secondary structure. It is generally believed that the spectral contributions of the side-chains largely cancel out because of their flexibility and the occurrence of many side-chains with different conformations. Yet, the influence of the side-chains on the ROA patterns assigned to different secondary structures is unknown. Here, the first systematic study of the influence of all amino acid side-chains on the ROA patterns is presented based on density functional theory (DFT) calculations of an extensive collection of peptide models that include many different side-chain and secondary structure conformations. It was shown that the contributions of the side-chains to a large extent average out with conformational flexibility. However, specific side-chain conformations can have significant contributions to the ROA patterns. It was also shown that α-helical structure is very sensitive to both the exact backbone conformation and the side-chain conformation. Side-chains with χ1≈−60° generate ROA patterns alike those in experiment. Aromatic side-chains strongly influence the amide III ROA patterns. Because of the huge structural sensitivity of ROA, the spectral patterns of proteins arise from extensive conformational averaging of both the backbone and the side-chains. The averaging results in the fine spectral details and relative intensity differences observed in experimental spectra.  相似文献   

3.
4.
A vibrational Raman optical activity (ROA) study of a series of alanine peptides in aqueous solution is presented. The seven-alanine peptide Acetyl-OOAAAAAAAOO-Amide (OAO), recently shown by NMR and UVCD to adopt a predominantly poly(l-proline II) (PPII) helical conformation in aqueous solution, gave an ROA spectrum very similar to that of disordered poly(l-glutamic acid) which has long been considered to adopt the PPII conformation, both being dominated by a strong positive extended amide III ROA band at approximately 1319 cm-1 together with weak positive amide I ROA intensity at approximately 1675 cm-1. A series of alanine peptides Ala2-Ala6 studied in their cationic states in aqueous solution at low pH displayed ROA spectra which steadily evolved toward that of OAO with increasing chain length. As well as confirming that alanine peptides can support the PPII conformation in aqueous solution, our results also confirm the previous ROA band assignments for PPII structure, thereby reinforcing the foundation for ongoing ROA studies of unfolded and partially folded proteins.  相似文献   

5.
We present the software package MO VI PAC for calculations of vibrational spectra, namely infrared, Raman, and Raman Optical Activity (ROA) spectra, in a massively parallelized fashion. MO VI PAC unites the latest versions of the programs SNF and AKIRA alongside with a range of helpful add‐ons to analyze and interpret the data obtained in the calculations. With its efficient parallelization and meta‐program design, MO VI PAC focuses in particular on the calculation of vibrational spectra of very large molecules containing on the order of a hundred atoms. For this purpose, it also offers different subsystem approaches such as Mode‐ and Intensity‐Tracking to selectively calculate specific features of the full spectrum. Furthermore, an approximation to the entire spectrum can be obtained using the Cartesian Tensor Transfer Method. We illustrate these capabilities using the example of a large π‐helix consisting of 20 (S)‐alanine residues. In particular, we investigate the ROA spectrum of this structure and compare it to the spectra of α‐ and 310‐helical analogs. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
We examine calculated vibrational Raman optical activity (ROA) spectra of octahedral cobalt complexes containing different combinations of acetylacetonato and 3‐acetylcamphorato ligands. Starting from the Δ‐tris(acetylacetonato)cobalt(III) complex, the ROA spectra of isomers generated by successive replacement of acetylacetonato ligands by chiral (+)‐ or (?)‐3‐acetylcamphorato ligands are investigated. In this way, it is possible to assess the influence of the degree of ligand substitution, ligand chirality, and geometrical isomerism on the ROA spectra. In addition, the effect of the Λ‐configuration is studied. It is found that the ROA spectra contain features that make it possible to identify each of the isomers, demonstrating the great sensitivity of ROA spectroscopy to the chiral nature of the various complexes.  相似文献   

7.
Splitting it up: Excellent agreement between the experimental and the quantum-chemically simulated Raman optical activity (ROA) spectrum of (+)-poly(trityl methacrylate) shows that the polymer backbone adopts a left-handed helical conformation while the trityl side groups display a left-handed propeller conformation. Thus ROA can be used to determine the complete structure of synthetic chiral polymers in solution.  相似文献   

8.
Raman optical activity (ROA) directly monitors the stereochemistry of chiral molecules and is now an incisive probe of biomolecular structure. ROA spectra contain a wealth of information on tertiary folding, secondary structure and even the orientation of individual residues in proteins and nucleic acids. Extension of ROA to an even wider range of samples could be facilitated by coupling its structural sensitivity to the low-concentration sensitivity provided by plasmon resonance enhancement. This leads to the new technique of surface enhanced ROA, or SEROA, which is complementary to both SERS and ROA. In this tutorial review, we present a survey of theoretical and experimental work undertaken to develop SEROA and discuss these efforts in the context of the ROA technique, and, based on the authors' work, outline possible future directions of research for this novel chiroptical spectroscopy.  相似文献   

9.
Raman optical activity (ROA) is pursued as a promising method for structural analyses of sugars in aqueous solutions. In the present study, experimental Raman and ROA spectra of glucose and sorbose obtained in an extended range (50–4000 cm−1) are interpreted using molecular dynamics and density functional theory, with the emphasis on CH stretching modes. A reasonable theoretical basis for spectral interpretation was obtained already at the harmonic level. Anharmonic corrections led to minor shifts of band positions (up to 25 cm−1) below 2000 cm−1, while the CH stretching bands shifted more, by ∼180 cm−1, and better reproduced the experiment. However, the anharmonicities could be included on a relatively low approximation level only, and they did not always improve the harmonic band shapes. The dependence on the structure and conformation shows that the CH stretching ROA spectral pattern is a sensitive marker useful in saccharide structure studies.  相似文献   

10.
A combined theoretical and experimental study of the vibrational absorption (VA)/IR, vibrational circular dichroism (VCD), Raman and Raman optical activity (ROA) spectra of l-histidine in aqueous solution has been undertaken to answer the questions (i) what are the species present and (ii) which conformers of the species are present under various experimental conditions. The VA spectra of l-histidine have been measured in aqueous solution and the spectral bands which can be used to identify both species (cation, zwitterion, anion) and conformer of the species have been identified and subsequently used to identify the species (zwitterion) and conformer (gauche minus minus, gauche minus plus for the side chain dihedral angles) present in solution at pH 7.6. The VCD spectral intensities have been used subsequently in combination with further theoretical studies to confirm the conclusions that have been arrived at by only analyzing the VA/IR spectra. Finally a comparison of measured Raman and ROA spectra of l-histidine with Raman and ROA spectral simulations for the conformers and species derived from the combined VA/IR and VCD experimental and theoretical work is presented as a validation of the conclusions arrived at from VA/IR and VCD spectroscopy. The combination of VA/IR and VCD with Raman and ROA is clearly superior and both sets of experiments should be performed.  相似文献   

11.
Motivated by experimental work on the distinction of protein secondary structure motifs by Raman optical activity (ROA) spectroscopy, we demonstrate using density functional theory that axial chirality in structures with different local chirality can be filtered out by ROA spectroscopy. To this purpose, two diastereomers of right-handed helical deca-alanine, the (all-S) and the (R,S,R,S,R,S,R,S,R,S) form, are compared. Furthermore, we suggest to interpret calculated ROA spectra of large molecules in terms of vibrational bands rather than individual peaks. This is due to the non-homogeneous effect of the harmonic approximation as well as of the chosen electronic structure method onto the vibrational frequencies, which in a dense region of many vibrations will strongly determine the shape of the spectrum. In addition, the calculated ROA spectrum of (all-S)-deca-alanine is compared to the experimental spectrum of poly-(L)-alanine in solution.  相似文献   

12.
Chiroptical techniques are increasingly employed for assigning the absolute configuration of chiral molecules through comparison of experimental spectra with theoretical predictions. For assignment of natural products, electronic chiroptical spectroscopies such as electronic circular dichroism (ECD) are routinely applied. However, the sensitivity of electronic spectral parameters to experimental conditions and the theoretical methods employed can lead to incorrect assignments. Vibrational chiroptical methods (vibrational circular dichroism, VCD, and Raman optical activity, ROA) provide more reliable assignments, although they, in particular ROA, have been little explored for assignments of natural products. In this study, the ECD, VCD, and ROA chiroptical spectroscopies are evaluated for the assignment of the absolute configuration of a highly flexible natural compound with two stereocenters and an asymmetrically substituted double bond, the marine antibiotic Synoxazolidinone A (SynOxA), recently isolated from the sub-Arctic ascidian Synoicum pulmonaria. Conformationally averaged nuclear magnetic resonance (NMR), ECD, Raman, ROA, infrared (IR) and VCD spectral parameters are computed for the eight possible stereoisomers of SynOxA and compared to experimental results. In contrast to previously reported results, the stereochemical assignment of SynOxA based on ECD spectral bands is found to be unreliable. On the other hand, ROA spectra allow for a reliable determination of the configuration at the double bond and the ring stereocenter. However, ROA is not able to resolve the chlorine-substituted stereogenic center on the guanidinium side chain of SynOxA. Application of the third chiroptical method, VCD, indicates unique spectral features for all eight SynOxA isomers in the theoretical spectra. Although the experimental VCD is weak and restricted by the limited amount of sample, it allows for a tentative assignment of the elusive chlorine-substituted stereocenter. VCD chiroptical analysis of a SynOxA derivative with three stereocenters, SynOxC, results in the same absolute configuration as for SynOxA. Despite the experimental challenges, the results convincingly prove that the assignment of absolute configuration based on vibrational chiroptical methods is more reliable than for ECD.  相似文献   

13.
High-resolution resonance Raman (RR) and resonance Raman optical activity (ROA) spectra of cytochrome c were obtained in order to perform full assignment of spectral features of the resonance ROA spectrum. The resonance ROA spectrum of cytochrome c revealed a distinct spectral signature pattern due to resonance enhanced skeletal porphyrin vibrations, more pronounced than any contribution from the protein backbone. Combining the intrinsic resonance properties of cytochrome c with the surface plasmon enhancement achieved with colloidal silver particles, the surface enhanced resonance Raman scattering (SERRS) and surface enhanced resonance ROA (SERROA) spectra of the protein were successfully obtained at concentrations as low as 1 microM. The assignments of spectral features were based on the information obtained from the RR and resonance ROA spectra. Excellent agreement between RR and SERRS spectra is reported, while some disparities were observed between the resonance ROA and SERROA spectra. These differences can be ascribed to perturbations of the physical properties of the protein upon adhesion to the surface of the silver colloids.  相似文献   

14.
We report calculations of the Raman and Raman optical activity (ROA) spectra of methyl-β-D-glucose utilizing density functional theory combined with molecular dynamics (MD) simulations to provide an explicit hydration environment. This is the first report of such combination of MD simulations with ROA ab initio calculations. We achieve a significant improvement in accuracy over the more commonly used gas phase and polarizable continuum model (PCM) approaches, resulting in an excellent level of agreement with the experimental spectrum. Modeling the ROA spectra of carbohydrates has until now proven a notoriously difficult challenge due to their sensitivity to the effects of hydration on the molecular vibrations involving each of the chiral centers. The details of the ROA spectrum of methyl-β-D-glucose are found to be highly sensitive to solvation effects, and these are correctly predicted for the first time including those originating from the highly sensitive low frequency vibrational modes. This work shows that a thorough consideration of the role of water is pivotal for understanding the vibrational structure of carbohydrates and presents a new and powerful tool for characterizing carbohydrate structure and conformational dynamics in solution.  相似文献   

15.
Poly(phenylacetylene)s are a family of helical polymers constituted by conjugated double bonds. Raman spectra of these polymers show a structural fingerprint of the polyene backbone which, in combination with its helical orientation, makes them good candidates to be studied by Raman optical activity (ROA). Four different well‐known poly(phenylacetylene)s adopting different scaffolds and ten different helical senses have been prepared. Raman and ROA spectra were recorded and allowed to establish ROA‐spectrum/helical‐sense relationships: a left/right‐handed orientation of the polyene backbone (Mhelix/Phelix) produces a triplet of positive/negative ROA bands. Raman and ROA spectra of each polymer exhibited the same profile, and the sign of the ROA spectrum was opposite to the lowest‐energy electronic circular dichroism (ECD) band, indicating a resonance effect. Resonance ROA appears then as an indicator of the helical sense of poly(phenylacetylene)s, especially for those with an extra Cotton band in the ECD spectrum, where a wrong helical sense is assigned based on ECD, while ROA alerts of this misassignment.  相似文献   

16.
Vibrational circular dichroism (VCD) spectroscopy was used to study the effect of the different composition of mixed solvents and temperature on the conformation and aggregation states of two synthetically prepared polypeptides, poly-γ-benzyl-l-glutamate (PBLG) and poly-β-benzyl-l-aspartate (PBLA).Additions of trifluoroacetic acid (TFA) into a solution of heligenic solvents trichloromethane and benzene-d6 caused the conformational change from the α-helical to polyproline II-like for both of the polypeptides, which represented interesting transition previously mostly observed in aqueous solutions rather than in organic solvents. The VCD method proved a lower stability of the α-helical conformation of PBLA than PBLG and the structural differences between these polypeptides.The variation of temperature in the region 13–50 °C induced atypical conformational transformations in the PBLG/trichloromethane/TFA and PBLG/benzene-d6/TFA systems. The usually more stable α-helical conformation was observed at higher temperatures than the polyproline II-like conformation.  相似文献   

17.
Optically active peptide foldamers Tfa-[(S)-(alphaEt)Leu]-[(S)-(alphaEt)Nva]-Deg-[(S)-(alphaEt)Nle]-OEt (10) and Tfa-[(S)-(alphaEt)Val]-[(S)-(alphaEt)Leu]-[(S)-(alphaEt)Nva]-Deg-[(S)-(alphaEt)Nle]-OEt (11) composed of diverse alpha-ethylated alpha,alpha-disubstituted alpha-amino acids were synthesized. The dominant conformation of these peptides in solution was an unusual, fully extended planar conformation, and that in the crystal state was both right-handed (P) and left-handed (M) 3(10)-helical structures in 10 and a P 3(10)-helical structure in 11, respectively. The preferred planar C(5) conformation of the peptides prepared from chiral alpha-ethylated alpha,alpha-disubstituted alpha-amino acids was drastically different from the 3(10)-helical structure of the peptides prepared from chiral alpha-methylated alpha,alpha-disubstituted alpha-amino acids.  相似文献   

18.
Raman and Raman optical activity (ROA) spectra of poly-L-proline were recorded in a wide frequency range and analyzed with respect to the proline side chain conformation. The analysis was based on comparison to ab initio simulations of spectral band positions and intensities. The presence of two conformer states of the five-member ring was found, approximately equally populated in the polypeptide. Additionally, Raman and ROA spectral shapes indicated that the peptide adopts the polyproline II helical conformation, in both aqueous and TFE solutions. The helix, however, is perturbed by fluctuations, which affects the vibrational coupling among amino acid residues and broadens the ROA bands. Contributions of the side and main peptide chains to the polyproline ROA intensities have comparable magnitudes. Thus understanding of the origins of both signals is important for determination of the peptide structure by ROA.  相似文献   

19.
We have investigated the onset of the secondary structure and the evolution of two-dimensional infrared (2D IR) spectral patterns as a function of chain length with a study of 3(10)-helical peptides. The results show that 2D IR is highly sensitive to peptide conformation, disorder, and size. An extensive set of 2D IR spectra of C (alpha)-methylated homopeptides, Z-(Aib) n -O tBu ( n = 3, 5, 8, and 10), in CDCl 3 was measured in the amide-I region. The 2D spectral patterns of the tripeptide are quite different from those of the longer peptides. The spectral signatures begin to converge at the pentapeptide and become almost the same for the octa- and decapeptide. Simulations employing a vibrational exciton model were performed, with the local mode frequency shifts estimated from the intramolecular hydrogen bond electrostatic energies. The 2D spectra are well simulated using dihedral angle distributions around the average values (phi, psi) approximately (-57 degrees , -31 degrees) with a width of approximately 21 degrees. The simulated site-dependent amide-I local mode frequencies are in agreement with those from scaled semiempirical AM1 calculations. The tripeptide exhibits a more noticeable discrepancy between the experimental and simulated cross-peak patterns. This behavior suggests the presence of a peptide population outside the single beta-turn conformation. The onset of the 3(10)-helical secondary structure appears to already occur at the pentapeptide level.  相似文献   

20.
Raman and Raman optical activity (ROA) spectroscopy are used to study the solution‐phase structure of the glycan moiety of the protein ribonuclease B (RNase B). Spectral data of the intact glycan moiety of RNase B is obtained by subtracting high‐quality spectral data of RNase A, the non‐glycosylated form of the RNase, from the spectra of the glycoprotein. The remaining difference spectra are compared to spectra generated from Raman and ROA data of the constituent disaccharides of the RNase glycan, achieving convincing spectral overlap. The results show that ROA spectroscopy is able to extract detailed spectral data of the glycan moieties of proteins, provided that the non‐glycosylated isoform is available. Furthermore, good comparison between the full glycan spectrum and the regenerated spectra based on the disaccharide data lends great promise to ROA as a tool for the solution‐phase structural analysis of this structurally elusive class of biomolecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号