首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A bioassay-guided isolation of the ethanol extract from the fruits of Piper longum yielded a known piperidine alkaloid, piperine, as a monoamine oxidase (MAO) inhibitor. Piperine showed an inhibitory effect against MAO-A (IC50 value: 20.9 microM) and MAO-B (IC50 value: 7.0 microM). Kinetic analyses by a Lineweaver-Burk plot clearly indicated that piperine competitively inhibited MAO-A and MAO-B with Ki values of 19.0+/-0.9 microM and 3.19+/-0.5 microM, respectively. The inhibition by piperine was found to be reversible by dialysis of the incubation mixture. In addition, the immobility times in the tail suspension test were significantly reduced by piperine, similar to that of the reference antidepressant fluoxetine, without accompanying changes in ambulation when assessed in an open-field. These results suggest that piperine possesses potent antidepressant-like properties that are mediated in part through the inhibition of MAO activity, and therefore represent a promising pharmacotherapeutic candidate as an antidepressant agent.  相似文献   

2.
The inhibitory compound of monoamine oxidase (MAO) activity was isolated from the CH(2)Cl(2) fraction of the fructus of Evodia rutaecarpa and identified as 1-methyl-2-undecyl-4(1H)-quinolone (1). Compound 1 showed a selective inhibition of type B MAO (MAO-B) activity with the IC(50) value of 15.3 microM using a substrate kynuramine, but did not inhibit type A MAO (MAO-A) activity. The kinetic analysis using Lineweaver-Burk plots indicated that compound 1 competitively inhibited MAO-B activity with the K(i) value of 9.91 microM. The inhibition of MAO-B by compound 1 was found to be irreversible by dialysis of the incubation mixture. These results suggest that compound 1 is a potent irreversible inhibitor of MAO-B, and may regulate catecholamine content in the neurons.  相似文献   

3.
Monoamine oxidase (MAO) enzymes are one of the most promising targets for the treatment of neurological disorders. A series of phenylisoxazole carbohydrazides was designed, synthesized and screened for both MAO-A and MAO-B inhibition using Amplex Red assays. None of the compounds inhibited the MAO-A activity while most of them significantly inhibited MAO-B in the micromolar to nanomolar range. Among them, the compound N'-(4-methylbenzylidene)-5-phenylisoxazole-3-carbohydrazide (6c) exhibited the most potent inhibitory activity towards MAO-B. Enzyme kinetic studies revealed the reversible and competitive nature of compound 6c towards MAO-B inhibition. The results of the enzyme inhibition assay were in agreement with molecular docking study, in which compound 6c displayed a strong binding affinity for MAO-B with a docking score of -10.98 Kcal/mol. In order to explore the neuroprotective effect of compound 6c, MPTP-induced mouse model for Parkinson’s disease was used, and motor behavioural assessment of experimental animals was carried out. The compound 6c was able to significantly prevent the MPTP-induced neurotoxicity as revealed by improvement in gait behaviour in footprint test and increase in grip strength score in horizontal wire test. Thus, phenylisoxazole carbohydrazides can be promising leads in the development of potent, selective and reversible MAO-B inhibitors for the treatment of Parkinson’s disease.  相似文献   

4.
Monoamine oxidase (MAO) is a flavin adenine dinucleotide (FAD)-containing enzyme located at the outer membranes of mitochondria that catalyzes the oxidative deamination of biogenic and xenobiotic amines. We have used a chromatographic method to measure MAO-enzymatic activity by using kynuramine as a non-selective substrate with its MAO-oxidation product subsequently analyzed by RP-HPLC-DAD and HPLC-mass spectrometry (MS). This method was applied to study the kinetic parameters, inhibition and reaction products of MAO recombinant enzymes in presence of tetrahydro-beta-carboline and beta-carboline alkaloids occurring in foods, plants and mammals. Analysis by HPLC showed that tetrahydro-beta-carbolines or beta-carbolines were not modified by MAO. Several beta-carbolines such as tryptoline (1,2,3,4-tetrahydro-beta-carboline) and 1-methyltryptoline (1-methyl-1,2,3,4-tetrahydro-beta-carboline) were inhibitors of MAO-A; instead their corresponding 6-hydroxy-derivatives (6-hydroxytryptoline and 6-hydroxy-1-methyltryptoline) lacked this activity. Tetrahydro-beta-carboline-3-carboxylic acids were unable to inhibit MAO enzymes. In contrast, their oxidation products, i.e. the fully aromatic beta-carbolines (norharman and harman), acted as good inhibitors of MAO. Two tetrahydro-beta-carbolines (i.e. tryptoline and 1-methyltryptoline) occurring in foods were isolated by solid-phase extraction (SPE) and RP-HPLC from selected samples of sausages and the corresponding extracts exhibited good inhibition properties over MAO-A. These results suggest that beta-carbolines from foods, plants, and mammals may exert inhibitory actions on MAO enzymes.  相似文献   

5.
A set of structurally related O-methylated flavonoid natural products isolated from Senecio roseiflorus (1), Polygonum senegalense (2 and 3), Bhaphia macrocalyx (4), Gardenia ternifolia (5), and Psiadia punctulata (6) plant species were characterized for their interaction with human monoamine oxidases (MAO-A and -B) in vitro. Compounds 1, 2, and 5 showed selective inhibition of MAO-A, while 4 and 6 showed selective inhibition of MAO-B. Compound 3 showed ~2-fold selectivity towards inhibition of MAO-A. Binding of compounds 1–3 and 5 with MAO-A, and compounds 3 and 6 with MAO-B was reversible and not time-independent. The analysis of enzyme-inhibition kinetics suggested a reversible-competitive mechanism for inhibition of MAO-A by 1 and 3, while a partially-reversible mixed-type inhibition by 5. Similarly, enzyme inhibition-kinetics analysis with compounds 3, 4, and 6, suggested a competitive reversible inhibition of MAO-B. The molecular docking study suggested that 1 selectively interacts with the active-site of human MAO-A near N5 of FAD. The calculated binding free energies of the O-methylated flavonoids (1 and 4–6) and chalcones (2 and 3) to MAO-A matched closely with the trend in the experimental IC50′s. Analysis of the binding free-energies suggested better interaction of 4 and 6 with MAO-B than with MAO-A. The natural O-methylated flavonoid (1) with highly potent inhibition (IC50 33 nM; Ki 37.9 nM) and >292 fold selectivity against human MAO-A (vs. MAO-B) provides a new drug lead for the treatment of neurological disorders.  相似文献   

6.
Twelve pyridazinones (T1–T12) containing the (2-fluorophenyl) piperazine moiety were designed, synthesized, and evaluated for monoamine oxidase (MAO) -A and -B inhibitory activities. T6 was found to be the most potent MAO-B inhibitor with an IC50 value of 0.013 µM, followed by T3 (IC50 = 0.039 µM). Inhibitory potency for MAO-B was more enhanced by meta bromo substitution (T6) than by para bromo substitution (T7). For para substitution, inhibitory potencies for MAO-B were as follows: -Cl (T3) > -N(CH3)2 (T12) > -OCH3 (T9) > Br (T7) > F (T5) > -CH3 (T11) > -H (T1). T6 and T3 efficiently inhibited MAO-A with IC50 values of 1.57 and 4.19 µM and had the highest selectivity indices (SIs) for MAO-B (120.8 and 107.4, respectively). T3 and T6 were found to be reversible and competitive inhibitors of MAO-B with Ki values of 0.014 and 0.0071, respectively. Moreover, T6 was less toxic to healthy fibroblast cells (L929) than T3. Molecular docking simulations with MAO binding sites returned higher docking scores for T6 and T3 with MAO-B than with MAO-A. These results suggest that T3 and T6 are selective, reversible, and competitive inhibitors of MAO-B and should be considered lead candidates for the treatment of neurodegenerative disorders like Alzheimer’s disease.  相似文献   

7.
Halogens have been reported to play a major role in the inhibition of monoamine oxidase (MAO), relating to diverse cognitive functions of the central nervous system. Pyrazoline/halogenated pyrazolines were investigated for their inhibitory activities against human monoamine oxidase-A and -B. Halogen substitutions on the phenyl ring located at the fifth position of pyrazoline showed potent MAO-B inhibition. Compound 3-(4-ethoxyphenyl)-5-(4-fluorophenyl)-4,5-dihydro-1H-pyrazole (EH7) showed the highest potency against MAO-B with an IC50 value of 0.063 µM. The potencies against MAO-B were increased in the order of –F (in EH7) > –Cl (EH6) > –Br (EH8) > –H (EH1). The residual activities of most compounds for MAO-A were > 50% at 10 µM, except for EH7 and EH8 (IC50 = 8.38 and 4.31 µM, respectively). EH7 showed the highest selectivity index (SI) value of 133.0 for MAO-B, followed by EH6 at > 55.8. EH7 was a reversible and competitive inhibitor of MAO-B in kinetic and reversibility experiments with a Ki value of 0.034 ± 0.0067 µM. The molecular dynamics study documented that EH7 had a good binding affinity and motional movement within the active site with high stability. It was observed by MM-PBSA that the chirality had little effect on the overall binding of EH7 to MAO-B. Thus, EH7 can be employed for the development of lead molecules for the treatment of various neurodegenerative disorders.  相似文献   

8.
From the extract of a Malaysian herbal medicine, Lemuni Hitam (Diospyros sp.), which exhibited monoamine oxidase (MAO) inhibition, three new naphthoquinone and/or naphthalene dimers (lemuninols A-C, 1-3) were isolated together with 4,6-dihydroxy-5-methoxy-2-methyl-naphthalene (8) and six known monomers (4-7, 9 and 10). The structures were determined by spectroscopic methods including 2D-NMR techniques. Among them, lemuninol A showed 45% inhibition of MAO (mouse liver) at 5.0 x 10(-6) g/ml, and lemuninols B and C and a naphthoquinone (9) indicated weak activity. Some related quinones were also tested for their MAO inhibitory activities.  相似文献   

9.
Abstract

In this study, a novel series of benzothiazole-thiazolylhydrazine (3a–3i) was synthesized and their structures were characterized by 1H-NMR, 13C-NMR spectrometry, and mass spectroscopy. These compounds were evaluated as inhibitors of type A and type B monoamine oxidase (MAO) enzymes. The most active compound 3b (2-((2-(2-(4-(4-Nitrophenyl)thiazol-2-yl)hydrazineylidene)-2-phenylethyl)thio)benzothiazole) showed strong inhibitory activity at hMAO-A (IC50 of 0.095?±?0.004?µM). Furthermore, compound 3i (2-((2-(2-(4-(2,4-dichlorophenyl)thiazol-2-yl)hydrazineylidene)-2-phenylethyl)thio)benzothiazole) showed significant inhibition profile on hMAO-A with the IC50 values 0.141?±?0.006?µM.  相似文献   

10.
A series of iodinated analogues of MD-230254 was synthesized and evaluated for inhibitory potency and selectivity toward monoamine oxidase B (MAO-B). Among them, 5-[4-(2-iodobenzyloxy)phenyl]-3-(cyanoethyl)-1,3,4-oxadiazole-2(3H)one (2-IBPO) was found to have high inhibitory potency and selectivity toward MAO-B (IC50=2.0 nM, MAO-A/MAO-B >50000). Analysis of the inhibition kinetics indicated that 2-IBPO acts in a two-step mechanism as a competitive, slow, and tight-binding inhibitor of MAO-B with a Ki value of 2.4 nM and an overall Ki* value at an equilibrium of 3.8 nM. The new radioligand for MAO-B, [125I]2-IBPO was conveniently synthesized from a tributylstannyl precursor by an iododestannylation reaction using sodium [125I]iodide and hydrogen peroxide with high radiochemical yield. The in vivo tissue distribution studies of [125I]2-IBPO demonstrated its high initial uptake and prolonged retention in the brain. A selective interaction of [125I]2-IBPO with MAO-B was confirmed by the pretreatment experiment with well known MAO specific inhibitors, l-deprenyl, Ro-16-6491, clorgyline, and Ro-41-1049. These very desirable characteristics of [125I]2-IBPO suggested that a 123I-labeled counterpart, [123I]2-IBPO, would have great potential in in vivo studies of MAO-B in the human brain with single photon emission computed tomography (SPECT).  相似文献   

11.
The methanolic extract (ME) of Solanum torvum seeds and its ethyl acetate fraction (EAF) were investigated for their antidepressant activity using behavioral (forced swim test, FST and tail suspension test, TST) and biochemical (monoamine oxidase, MAO reduced activity) tests. ME (10, 30 and 100?mg?kg(-1)) and EAF (10 and 30?mg?kg(-1)) dose dependently inhibited the immobility period, increased noradrenaline, serotonin and dopamine levels and inhibited the MAO enzymes in FST and TST using mice. Furthermore, we have observed antagonism between the threshold dose of ME (30 and 100?mg?kg(-1)) and EAF (10 and 30?mg?kg(-1)) with antagonists on behaviour mediated by neurotransmitters noradrenaline, serotonin and dopamine. MAO-A inhibition was more prominent as compared to MAO-B inhibition. The study provides evidence for antidepressant actions of S. torvum.  相似文献   

12.
MAO-B inhibitors are frequently used in the treatment of neurodegenerative diseases such as Parkinson’s and Alzheimer’s. Due to the limited number of compounds available in this field, there is a need to develop new compounds. In the recent works, it was shown that various thiosemicarbazone derivatives show hMAO inhibitory activity in the range of micromolar concentration. It is thought that benzofuran and benzothiophene structures may mimic structures such as indane and indanone, which are frequently found in the structures of such inhibitors. Based on this view, new benzofuran/benzothiophene and thiosemicarbazone hybrid compounds were synthesized, characterized and screened for their hMAO-A and hMAO-B inhibitory activity by an in vitro fluorometric method. The compounds including methoxyethyl substituent (2b and 2h) were found to be the most effective agents in the series against MAO-B enzyme with the IC50 value of 0.042 ± 0.002 µM and 0.056 ± 0.002 µM, respectively. The mechanism of hMAO-B inhibition of compounds 2b and 2h was investigated by Lineweaver–Burk graphics. Compounds 2b and 2h were reversible and non-competitive inhibitors with similar inhibition features as the substrates. The Ki values of compounds 2b and 2h were calculated as 0.035 µM and 0.046 µM, respectively, with the help of secondary plots. The docking study of compound 2b and 2h revealed that there is a strong interaction between the active sites of hMAO-B and analyzed compound.  相似文献   

13.
As part of a series of studies to discover new topoisomerase II inhibitors, novel pyrimidoacridones, pyrimidophenoxadines, and pyrimidocarbazoles were synthesized, and in vitro and in vivo antitumor activities and DNA-protein and/or DNA-topoisomerase II cross-linking activity as an indicator of topoisomerase II-DNA cleavable complex formation were evaluated. The pyrimidocarbazoles possessed high in vitro and in vivo potencies. Compound 26 (ER-37326), 8-acetyl-2-[2-(dimethylamino)ethyl]-1H-pyrimido[5,6,1-jk]carbazole-1,3(2H)-dione, showed in vitro growth inhibitory activity with respective IC(50) values of 0.049 microM and 0.35 microM against mouse leukemia P388 and human oral cancer KB. In vivo, this compound inhibited the tumor growth of mouse sarcoma M5076 implanted into mice with T/C values of 42% and 13% at 3.13 and 6.25 mg/kg/d respectively without significantly affecting the body weight. In addition, compound 26 (ER-37326) increased the formation of DNA-topoisomerase II cross-linking in P388 cells.  相似文献   

14.
Lumazine synthase and riboflavin synthase catalyze the last two steps in the biosynthesis of riboflavin. To obtain structural and mechanistic probes of these two enzymes, as well as inhibitors of potential value as antibiotics, a sulfur analogue of the pyrimidine substrate of the lumazine synthase-catalyzed reaction and product of the riboflavin synthase-catalyzed reaction was designed. Facile syntheses of the S-nucleoside 5-amino-6-(D-ribitylthio)pyrimidine-2,4(1H,3H)-dione hydrochloride (15) and its nitro precursor 5-nitro-6-(D-ribitylthio)pyrimidine-2,4(1H,3H)-dione (14) are described. These compounds were tested against lumazine synthase and riboflavin synthase obtained from a variety of microorganisms. Compounds 14 and 15 were found to be inhibitors of both riboflavin synthase and lumazine synthase. Compound 14 is an inhibitor of Bacillus subtilis lumazine synthase (Ki 26 microM), Schizosaccharomyces pombe lumazine synthase (Ki 2.0 microM), Mycobacterium tuberculosis lumazine synthase (Ki 11 microM), Escherichia coli riboflavin synthase (Ki 2.7 microM), and Mycobacterium tuberculosis riboflavin synthase (Ki 0.56 muM), while compound 15 is an inhibitor of B. subtilis lumazine synthase (Ki 2.6 microM), S. pombe lumazine synthase (Ki 0.16 microM), M. tuberculosis lumazine synthase (Ki 31 microM), E. coli riboflavin synthase (Ki 47 microM), and M. tuberculosis riboflavin synthase (Ki 2.5 microM).  相似文献   

15.
A highly efficient method utilizing liquid chromatography with tandem mass spectrometry (LC/MS/MS) was developed and employed for high-throughput screening of compounds for monoamine oxidase (MAO) inhibition. The method used kynuramine as a common substrate for both MAO-A and MAO-B in incubations, and the 4-hydroxyquinoline (4-HQ) resulting from deamination of kynuramine followed by intramolecular condensation was analyzed using LC/MS/MS; formation of 4-HQ was used as the marker of MAO activity to evaluate the effects of test compounds. Isocratic liquid chromatography was applied to reduce the run time to 2 min. Because of the high specificity and sensitivity of detection of 4-HQ by LC/MS/MS, this method was able to use MAO enzymes at very low concentrations and to perform short incubations; as a result, consumable cost was minimized, and sample preparations were completely avoided. The inhibition data are highly reproducible, and the IC(50) values determined by the method are in good agreement with literature values. The results suggest that this method is very robust and can be used as a generic approach to screen for MAO inhibitors in drug discovery.  相似文献   

16.
A novel series of 1,3,5‐trisubstituted‐2‐pyrazoline derivatives ( 4a ‐ 4k ) was synthesized and their chemical structures characterized by 1H NMR, 13C NMR, and mass spectroscopy. These compounds were evaluated as inhibitors for of type A and type B monoamine oxidase (MAO) enzymes. The most common inhibitors of MAO enzymes used to treat depression and anxiety such as selegiline and moclobemide drugs were used as reference agents. A result of biological evaluation of these compounds revealed compounds 4c , 4d , and 4? as potent and selective MAO A inhibitors. The most active compound 4? , which is 2,4‐dimethoxy at phenyl ring, showed strong inhibitory activity at MAO A (IC50 of 0.0445 ± 0.0018μM). Furthermore, compounds 4c and 4d showed significant inhibition profile on MAO A with the IC50 values 0.1423 ± 0.0051μM and 0.2148 ± 0.0067μM, respectively.  相似文献   

17.
Calix[4]arenes bearing one or two methylenebisphosphonic acid fragments were prepared via addition of diethylphosphite to the parent calix[4]arene aldehydes. The resulting compounds displayed stronger inhibition of calf intestine alkaline phosphatase than simple methylenebisphosphonic or 4-hydroxyphenyl methylenebisphosphonic acids. The action of these phosphorylated calix[4]arenes is concordant with partial mixed-type inhibition. The inhibition constants Ki and Ki' for the calix[4]arene bis(methylenebisphosphonic) acid in Tris-HCl buffer at pH 9 are 0.38 microM and 2.8 microM respectively. The replacement of the phosphoric acid moieties on the macrocycle with diethylphosphonates results in a sharp decrease of its inhibitory action. Preorganizing phosphonic acid fragments using a calixarene platform therefore provides a promising approach for the design of efficient alkaline phosphatase inhibitors.  相似文献   

18.
This study reports the potent inhibitory effect of N-aryl S-alkylthiocarbamate derivatives on mushroom tyrosinase (MT) activity. N-Aryl S-alkylthiocarbamate derivatives were found to exhibit a potent inhibitory effect on the dopa (3,4-dihydroxyphenylalanine) oxidase activity of mushroom tyrosinase. Most of the N-aryl S-alkylthiocarbamate derivatives (compounds from A to J) exhibited higher inhibitory effects than kojic acid (IC50=318 microM), a well known tyrosinase inhibitor. Tyrosinase was the most inhibited by S-phenetyl N-phenylthiocarbamate (compound E, IC50=7.25 microM), and this inhibition was 44 times stronger than that of kojic acid. Compound E exhibited 95.0% of inhibition at 100 microM. A kinetic study of MT inhibition by compound E using the Lineweaver-Burk plots analysis was performed. And the kinetics profiles observed suggest that compound E competitively inhibits MT.  相似文献   

19.
The β-carboline alkaloid harmine is a potent DYRK1A inhibitor, but suffers from undesired potent inhibition of MAO-A, which strongly limits its application. We synthesized more than 60 analogues of harmine, either by direct modification of the alkaloid or by de novo synthesis of β-carboline and related scaffolds aimed at learning about structure–activity relationships for inhibition of both DYRK1A and MAO-A, with the ultimate goal of separating desired DYRK1A inhibition from undesired MAO-A inhibition. Based on evidence from published crystal structures of harmine bound to each of these enzymes, we performed systematic structure modifications of harmine yielding DYRK1A-selective inhibitors characterized by small polar substituents at N-9 (which preserve DYRK1A inhibition and eliminate MAO-A inhibition) and beneficial residues at C-1 (methyl or chlorine). The top compound AnnH75 remains a potent DYRK1A inhibitor, and it is devoid of MAO-A inhibition. Its binding mode to DYRK1A was elucidated by crystal structure analysis, and docking experiments provided additional insights for this attractive series of DYRK1A and MAO-A inhibitors.  相似文献   

20.
An ethanol Ficus glomerata wood extract and its purified components were investigated for their HIV-1 integrase (IN) and nitric oxide (NO) inhibitory activities. From bioassay-guided isolation, five compounds: beta-sitosterol-D-glucoside (1), aloe-emodin (2), genistein (3), 1,3,6-trihydroxy-8-methyl-anthraquinone (4) and 3-(1-C-beta-D-glucopyranosyl)-2,6-dihydroxy-5-methoxybenzoic acid (5) were isolated. Among the tested samples, at concentrations of 100 microM; compound 2 showed 31.9% inhibition of HIV-1 IN, followed by 4 (19.5%), whereas other compounds were inactive. With regard to the inhibitory effect on NO production, 3 possessed the highest activity with an IC50 value of 27.5 microM, followed by 4 (IC50 = 34.7 microM) and 2 (IC50 = 41.8 microM), respectively. This is the first time that compounds 2-5 have been isolated from Ficus glomerata.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号