首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study reports depigmenting potency of 1,3-selenazol-4-one derivatives, which would be based upon the finding of direct inhibition to mushroom tyrosinase. 1,3-Selenazol-4-one derivatives exhibited inhibitory effect on dopa oxidase activity of mushroom tyrosinase. In this study, inhibitory effects of six kinds of 1,3-selenazol-4-one derivatives (A, B, C, D, E and F) on mushroom tyrosinase were investigated. Compounds at a concentration of 500 microM exhibited 33.4-62.1% of inhibition on dopa oxidase activity of mushroom tyrosinase. Their inhibitory effects were higher than that of kojic acid (31.7%), a well known tyrosinase inhibitor. 2-(4-Methylphenyl)-1,3-selenazol-4-one (A) exhibited the strongest inhibitory effect among them dose-dependently and in competitive inhibition manner.  相似文献   

2.
In this work, we have synthesized a series of 2-thiazolylhydrazone derivatives ( 1–27 ) and investigated their biological activities as tyrosinase inhibitors and antioxidants. Some compounds showed potent tyrosinase inhibitory activities and 4-(2-(2-(1-(4-Aminophenyl)ethylidene)-hydrazinyl)thiazol-4-yl) phenol ( 26 ) showed more potent inhibitory effect than the standard tyrosinase inhibitor kojic acid (IC50: 9.8 μM vs. 23.6 μM). Compounds 2 , 14 , and 26 exhibited high antioxidant activities in 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays. The structure–activity relationship (SAR) indicated that the substitutions of bromine, hydroxyl group, and amino groups cause great effect to the inhibition effect against tyrosinase. The mechanism and kinetic studies demonstrated that the inhibitory effect of compound 26 on the tyrosinase by acting as the reversible and uncompetitive inhibitor. Docking studies suggests that compound 26 interacts strongly with mushroom tyrosinase via hydrogen bonding.  相似文献   

3.
This study reports depigmenting potency of selenium-containing carbohydrates, which would be based upon the finding of direct inhibition to mushroom tyrosinase. Two selenoglycosiede, SG-3 (bis(2,3,4-tri-O-acetyl-beta-D-arabinopyranosyl) selenide) and SG-8 (4'-methylbenzoyl 2,3,4,6-tetra-O-acetyl-D-selenomanopyranoside) among eleven selenium-containing compounds examined, were discovered to be effective depigmenting compounds on a mushroom tyrosinase inhibitory assay. SG-3 exhibited a competitive inhibition effect that was similar to kojic acid, well-known tyrosinase inhibitor. At 100 microM and 150 microM, SG-8 had an uncompetitive inhibitory effect that was higher than kojic acid. A study of a melan-a cell originated-tyrosinase inhibition assay showed that SG-8 had a lower inhibitory effect than kojic acid. SG-3 showed a similar inhibition effect to kojic acid on the melan-a cell-originated tyrosinase inhibitory assay. SG-8 showed dose-dependently cytotoxicity in a study of inhibition melanin synthesis by melan-a cells. Most melan-a cells did not survive after being treated with 20 microM of SG-8. At 10 microM, SG-3 inhibited melanin synthesis in the melan-a cells, and the effect was similar to phenylthiourea, which is a well-known inhibitor of melanin synthesis. Therefore, SG-3 is a new candidate for depigmenting reagents.  相似文献   

4.
From the MeOH extract of the heartwood of Artocapus altilis, thirteen phenolic compounds have been isolated, namely curcumin (1), desmethoxycurcumin (2), retrodihydrochalcone (3), apigenin (4), tangeretin (5), nobiletin (6), O-methyldehydrodieugenol (7), dehydrodieugenol (8), beta-hydroxypropiovanillone (9), p-coumaric acid (10), p-hydroxybenzaldehyde (11), vanillin (12), and vanillic acid (13). This is the first report on the presence of these compounds in the heartwood of A. altilis. Compounds 1, 2, and 10 showed more potent tyrosinase inhibitory activities, with IC50 values ranging from 2.3 to 42.0 microM, than the positive control kojic acid (IC50, 44.6 microM). The most active compound, p-coumaric acid (10) (IC50, 2.3 microM), was 22 times more active in tyrosinase inhibitory activity than kojic acid.  相似文献   

5.
A new coumarinolignoid 8'-epi-cleomiscosin A (1) together with the new glycoside 8-O-beta-D-glucopyranosyl-6-hydroxy-2-methyl-4H-1-benzopyrane-4-one (2) have been isolated from the aerial parts of Rhododendron collettianum and their structures determined on the basis of spectroscopic evidences. Tyrosinase inhibition study of these compounds and their structure-activity relationship (SAR) were also investigated. The compounds exhibited potent to mild inhibition activity against the enzyme. Especially, the compound 1 showed strong inhibition (IC50=1.33 microM) against the enzyme tyrosinase, as compared to the standard tyrosinase inhibitors kojic acid (IC50=16.67 microM) and L-mimosine (IC50=3.68 microM), indicating its potential used for the treatment of hyperpigmentation associated with the high production of melanocytes.  相似文献   

6.
In the present article, tyrosinase inhibition studies on fifteen diterpenoid alkaloids, with lycoctonine skeleton, and their semisynthetic derivatives 1-15 and six napelline-type compounds 16-21 are discussed. Their structure-activity relationship for tyrosinase inhibition is also discussed. These activities were compared with two referenced tyrosinase inhibitors, kojic acid and L-mimosine. The study showed that lappaconitine HBr (1) is the most potent member of the series (IC50 = 13.30 microM).  相似文献   

7.
Targeting tyrosinase for melanogenesis disorders is an established strategy. Hydroxyl-substituted benzoic and cinnamic acid scaffolds were incorporated into new chemotypes that displayed in vitro inhibitory effects against mushroom and human tyrosinase for the purpose of identifying anti-melanogenic ingredients. The most active compound 2-((4-methoxyphenethyl)amino)-2-oxoethyl (E)-3-(2,4-dihydroxyphenyl) acrylate (Ph9), inhibited mushroom tyrosinase with an IC50 of 0.059 nM, while 2-((4-methoxyphenethyl)amino)-2-oxoethyl cinnamate (Ph6) had an IC50 of 2.1 nM compared to the positive control, kojic acid IC50 16700 nM. Results of human tyrosinase inhibitory activity in A375 human melanoma cells showed that compound (Ph9) and Ph6 exhibited 94.6% and 92.2% inhibitory activity respectively while the positive control kojic acid showed 72.9% inhibition. Enzyme kinetics reflected a mixed type of inhibition for inhibitor Ph9 (Ki 0.093 nM) and non-competitive inhibition for Ph6 (Ki 2.3 nM) revealed from Lineweaver–Burk plots. In silico docking studies with mushroom tyrosinase (PDB ID:2Y9X) predicted possible binding modes in the catalytic site for these active compounds. Ph9 displayed no PAINS (pan-assay interference compounds) alerts. Our results showed that compound Ph9 is a potential candidate for further development of tyrosinase inhibitors.  相似文献   

8.
To confirm that the β-phenyl-α,β-unsaturated thiocarbonyl (PUSTC) scaffold, similar to the β-phenyl-α,β-unsaturated carbonyl (PUSC) scaffold, acts as a core inhibitory structure for tyrosinase, twelve (Z)-5-(substituted benzylidene)-4-thioxothiazolidin-2-one ((Z)-BTTZ) derivatives were designed and synthesized. Seven of the twelve derivatives showed stronger inhibitory activity than kojic acid against mushroom tyrosinase. Compound 2b (IC50 = 0.47 ± 0.97 µM) exerted a 141-fold higher inhibitory potency than kojic acid. Kinetic studies’ results confirmed that compounds 2b and 2f are competitive tyrosinase inhibitors, which was supported by high binding affinities with the active site of tyrosinase by docking simulation. Docking results using a human tyrosinase homology model indicated that 2b and 2f might potently inhibit human tyrosinase. In vitro assays of 2b and 2f were conducted using B16F10 melanoma cells. Compounds 2b and 2f significantly and concentration-dependently inhibited intracellular melanin contents, and the anti-melanogenic effects of 2b at 10 µM and 2f at 25 µM were considerably greater than the inhibitory effect of kojic acid at 25 µM. Compounds 2b and 2f similarly inhibited cellular tyrosinase activity and melanin contents, indicating that the anti-melanogenic effects of both were due to tyrosinase inhibition. A strong binding affinity with the active site of tyrosinase and potent inhibitions of mushroom tyrosinase, cellular tyrosinase activity, and melanin generation in B16F10 cells indicates the PUSTC scaffold offers an attractive platform for the development of novel tyrosinase inhibitors.  相似文献   

9.
One of the most promising plants in biological screening test results of thirteen Artocarpus species was Artocarpus obtusus FM Jarrett and detailed phytochemical investigation of powdered dried bark of the plant has led to the isolation and identification of three xanthones; pyranocycloartobiloxanthone A (1), dihydroartoindonesianin C (2) and pyranocycloartobiloxanthone B (3). These compounds were screened for antioxidant, antimicrobial and tyrosinase inhibitory activities. Pyranocycloartobiloxanthone A (1) exhibited a strong free radical scavenger towards DPPH free radicals with IC50 value of 2 μg/mL with prominent discoloration observed in comparison with standard ascorbic acid, α-tocopherol and quercetin, The compound also exhibited antibacterial activity against methicillin resistant Staphylococcus aureus (ATCC3359) and Bacillus subtilis (clinically isolated) with inhibition zone of 20 and 12 mm, respectively. However the other two xanthones were found to be inactive. For the tyrosinase inhibitory activity, again compound (1) displayed strong activity comparable with the standard kojic acid.  相似文献   

10.
筛选胀果甘草是对蘑菇酪氨酸酶抑制活性最强的提取物,并研究其对蘑菇酪氨酸酶的抑制类型,探究其抑制作用机理。 考察了胀果甘草7种不同溶剂包括甘草酸、提酸废液、石油醚、氯仿、乙酸乙酯、正丁醇及水提取物对蘑菇酪氨酸酶的抑制作用和对2,2-联氮-双(3-乙基苯并噻唑啉-6-磺酸)二胺盐(ABTS)自由基阳离子(ABTS·﹢)、羟基自由基(HO·)的清除作用,根据双倒数曲线图形判断对蘑菇酪氨酸酶的抑制作用类型,结合抗氧化能力探究对蘑菇酪氨酸酶的抑制作用机理。 在胀果甘草7种溶剂提取物中,以乙酸乙酯提取物对蘑菇酪氨酸酶具有最强的抑制作用,IC50为3.4775 g/L,双倒数曲线做图得到了一组纵轴截距不变的曲线,抑制常数K1为0.6667 g/L,胀果甘草乙酸乙酯提取物也具有最强的清除ABTS·﹢、HO·的能力,半清除浓度和速率常数分别为0.0442 g/L和4.634×108 L/(g·s)。 胀果甘草乙酸乙酯提取物对蘑菇酪氨酸酶的抑制作用是可逆竞争性抑制,推测其对酪氨酸酶的抑制是通过清除了氧自由基和作为竞争性底物而实现的。  相似文献   

11.
A series of diarylpropane compounds was isolated by screening a plant extract library for inhibitors of mushroom tyrosinase. The most potent compound, 1-(2,4-dihydroxyphenyl)-3-(2,4-dimethoxy-3-methylphenyl)propane (UP302: CAS# 869743-37-3), was found in the medicinal plant Dianella ensifolia. Synthetic and plant-derived versions of UP302 inhibited mushroom tyrosinase with similar potencies. UP302 inhibited mushroom tyrosinase with K(i)=0.3 microM, in a competitive and reversible fashion. UP302 was 22 times more potent than Kojic acid in inhibiting murine tyrosinase, with IC(50) values of 12 and 273 microM respectively. Experiments on mouse melanoma cells B16-F1 and on human primary melanocytes demonstrated that UP302 inhibits melanin formation with IC(50) values of 15 and 8 microM respectively. Long-term treatment of cultured melanocytes with up to 62 microM of UP302 revealed no detectable cytotoxicity. In a reconstructed skin model (MelanoDerm) topical application of 0.1% UP302 resulted in significant skin lightening and decrease of melanin production without effects on cell viability, melanocyte morphology or overall tissue histology. In conclusion, UP302 is a novel tyrosinase inhibitor that suppresses melanin production in both cultured melanocytes and reconstructed skin with high potency and without adverse side effects.  相似文献   

12.
The native amino acid ergothioneine, a thiourea derivative of histidine, inhibits mushroom tyrosinase activity in a dose-dependent manner, with an IC50 value of 1.025 mg/ml (4.47 mM). By contrast, histidine exhibited no inhibitory effect on mushroom tyrosinase activity. We characterized ergothioneine as a noncompetitive tyrosinase inhibitor using a Lineweaver–Burk plot of experimental kinetic data. The IC50 value for ergothioneine scavenging of 2,2-diphenyl-1-picrylhydrazyl was 6.110 ± 0.305 mg/ml, much higher than the IC50 for inhibition of tyrosinase activity which indicating ergothioneine on tyrosinase shows a weak correlation to its antioxidative activity. The results demonstrated that ergothioneine has a potent inhibition effect on tyrosinase enzyme activity, resulting from the presence of the sulfur substituted imidazole ring in ergothioneine.  相似文献   

13.
New 3-amino-5-ethenylcyclopentenones, myrothenones A (4) and B (5), were isolated together with known 6-n-pentyl-alpha-pyrone (1), trichodenone A (2), and cyclonerodiol (3) from the marine algicolous fungus of genus of Myrothecium. The structure and absolute stereochemistry of the new compounds were established by spectral interpretation and X-ray analysis. Compounds 1 and 4 exhibited a tyrosinase inhibitory activity with IC(50) value of 0.8 and 6.6 muM, respectively, which are more active than kojic acid (IC(50), 7.7 muM) currently being used as a functional personal-care compound.  相似文献   

14.
Trifolium balansae (Leguminosae) yielded a phytylester, phytyl-1-hexanoate, three steroids, stigmast-5-ene-3 beta,26-diol, stigmast-5-ene-3-ol and campesterol, and an alcohol, pentacosanol which were reported for the first time from T.balansae. The structures of the isolates were determined by 1D and 2D NMR techniques and MS spectroscopy. Compounds 1-5 were tested for their enzyme tyrosinase activity. While compounds 1 and 5 did not show any inhibition against the enzyme tyrosinase, compounds 2, 3, and 4 exhibited potent inhibition against tyrosinase. Highly potent (IC50 = 2.39 microM) inhibition was found by compound 2, when compared with the standard tyrosinase inhibitors Kojic acid and L-mimosine.  相似文献   

15.
Currently available non-steroidal anti-inflammatory drugs (NSAIDs) such as aspirin are directed at the cyclooxygenase (COX) site, but not the peroxidase (POX) activity of prostaglandin H2 synthase (PGHS). They are thus unable to inhibit the free-radical induced tissue injury associated with PGHS peroxidase activity, which can occur independently of the COX site. A lead compound, anthranilic hydroxamic acid (AHA) was found to have significant PGHS-POX inhibitory activity (IC50= 72 microM). To define the critical parameters for PGHS-POX inhibition, we investigated 29 AHA derivatives, synthesised from their acid precursors, using solid phase synthesis. In vitro analysis demonstrated a ten-fold improvement in inhibition with 3,5-diiodoanthranilic hydroxamic acid (IC50= 7 microM).  相似文献   

16.
曲酸对马铃薯酪氨酸酶的抑制作用研究   总被引:3,自引:0,他引:3  
曲酸等几种化合物对马铃薯酪氨酸酶的抑制作用表明:巯基类化合物、抗坏血酸和曲酸具有较强的抑制作用。预水浴温度和时间对曲酸的抑制作用并没有显著影响,曲酸通过延长L-tyrosine加氧羟化的迟滞时间,从而抑制单酚酶活性,以L—DOPA为底物测得曲酸为竞争性抑制,抑制常数艏为0.17mM。紫外光谱表明曲酸能将二酚酶催化的产物o-醌还原成二酚,从而抑制黑色素的生成。  相似文献   

17.
The aqueous extract of galls from Terminalia chebula Retz. (Combretaceae) was fractionated on Diaion and refractionated on octadecyl silica column. Six phenolic compounds were isolated and identified as gallic acid (1), punicalagin (2), isoterchebulin (3), 1,3,6-tri-O-galloyl-β-D-glucopyranose (4), chebulagic acid (5) and chebulinic acid (6). All of the compounds showed stronger 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and melanin inhibitory activities than ascorbic acid, butylated hydroxytoluene, α-tocopherol, arbutin and kojic acid, the reference compounds. Gallic acid (1) exhibited inhibitory activity against nitric oxide production in lipopolysaccharide-activated macrophages. However, all isolated compounds exhibited less activity than the reference compounds in mushroom tyrosinase inhibition and human tumour cytotoxicity assays. This study has demonstrated that the phenolic compounds isolated from galls of T. chebula might contribute significantly due to their antioxidant and whitening activities.  相似文献   

18.
Currently, aloesin is used in the cosmetic industry as a whitening agent because it inhibits tyrosinase activity. Aloesin is a C-glycosylated chromone compound isolated from aloe, and it is difficult to synthesize because of C-glycosyl moiety in the molecule. The purpose of this study is to search for a new chromone compound which is easy to synthesize and which posesses stronger tyrosinase inhibitory activity than aloesin. Fourteen chromone derivatives were synthesized and screened for their mushroom-tyrosinase inhibitory activity. 5-Methyl-7-methoxy-2-(2'-benzyl-3'-oxobutyl)chromone (15) showed the strongest activity among tested compounds. Its activity was not only stronger than aloesin, but also stronger than arbutin and kojic acid. The kinetic analysis revealed a competitive inhibition of 15 with tyrosinase for the L-tyrosine binding site.  相似文献   

19.
Tyrosinase requires two copper ions at the active site, in order to oxidize phenols to catechols. In this study, the inhibitory effect of the copper-chelating compound, ammonium tetrathiotungstate (ATTT), on the tyrosinase activity was investigated. ATTT was determined to inactivate the activity of mushroom tyrosinase, in a dose-dependent manner. The kinetic substrate reaction revealed that ATTT functions as a kinetically competitive inhibitor in vitro, and that the enzyme-ATTT complex subsequently undergoes a reversible conformational change, resulting in the inactivation of tyrosinase. In human melanin-producing cells, ATTT evidenced a more profound tyrosinase-inhibitory effect than has been seen in the previously identified tyrosinase inhibitors, including kojic acid and hydroquinone. Our results may provide useful information for the development of whitening agent.  相似文献   

20.
We describe the design, synthesis, and biological activities of 5-chloro-2-(substituted phenyl)benzo[d]thiazole derivatives as novel tyrosinase inhibitors. Among them, 4-(5-chloro-2,3-dihydrobenzo[d]thiazol-2-yl)-2,6-dimethoxyphenol (MHY884) and 2-bromo-4-(5-chloro-benzo[d]thiazol-2-yl)phenol (MHY966) showed inhibitory activity higher than or similar to kojic acid, against mushroom tyrosinase. Therefore, we carried out kinetic studies on the two compounds with potent tyrosinase inhibitory effects. Kinetic analysis of tyrosinase inhibition revealed that all of these compounds are competitive inhibitors. MHY884 and MHY966 effectively inhibited tyrosinase activity and reduced melanin levels in B16 cells treated with ??-melanocyte stimulating hormone (??-MSH). These data strongly suggest that the newly synthesized compounds MHY884 and MHY966 could suppress production of melanin via inhibition of tyrosinase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号