首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Controlled radical polymerization of cyclohexyl methacrylate (CHMA), at ambient temperature, using various chain transfer agents (CTAs) is successfully demonstrated via single electron transfer‐radical addition fragmentation chain transfer (SET‐RAFT). Well‐controlled polymerization with narrow molecular weight distribution (Mw/Mn) < 1.25 was achieved. The polymerization rate followed first‐order kinetics with respect to monomer conversion, and the molecular weight of the polymer increased linearly up to high conversion. A novel, fluorescein‐based initiator, a novel fluorescent CTA and two other CTAs comprising of butane thiol trithiocarbonate with cyano (CTA 1) and carboxylic acid (CTA 3) as the end group were synthesized and characterized. The polymerization is observed to be uncontrolled under SET and less controlled under atom transfer radical polymerization (ATRP) condition. CTA 2 and 3 produces better control in propagation compared with CTA 1, which may be attributed to the presence of R group that undergoes ready fragmentation to radicals, at ambient temperature. The poly(cyclohexyl methacrylate) [P(CHMA)] prepared through ATRP have higher fluorescence intensity compared with those from SET‐RAFT, which may be attributed to the quenching of fluorescence by the trithiocarbonate and the long hydrocarbon chain. It is observed that block copolymers P(CHMA‐bt‐BMA) produced from P(CHMA) macroinitiators synthesized via SET‐RAFT result in lower polydispersity index in comparison with those synthesized via ATRP. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

2.
The polymerization of MMA, at ambient temperature, mediated by dansyl chloride is investigated using controlled radical polymerization methods. The solution ATRP results in reasonably controlled polymerization with PDI < 1.3. The SET‐LRP polymerization is less controlled while SET‐RAFT polymerization is controlled producing poly(methyl methacrylate) (PMMA) with the PDI < 1.3. In all the cases, the polymerization rate followed first order kinetics with respect to monomer conversion and the molecular weight of the polymer increased linearly with conversion. The R group in the CTAs do not appear to play a key role in controlling the propagation rate. SET‐RAFT method appears to be a simpler tool to produce methacrylate polymers, under ambient conditions, in comparison with ATRP and SET‐LRP. Fluorescent diblock copolymers, P(MMA‐b‐PhMA), were synthesized. These were highly fluorescent with two distinguishable emission signatures from the dansyl group and the phenanthren‐1‐yl methacrylate block. The fluorescence emission spectra reveal interesting features such as large red shift when compared to the small molecule. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

3.
Electrochemically mediated atom transfer radical polymerizations (ATRPs) provide well‐defined polymers with designed dispersity as well as under external temporal and spatial control. In this study, 1‐cyano‐1‐methylethyl diethyldithiocarbamate, typically used as chain‐transfer agent (CTA) in reversible addition–fragmentation chain transfer (RAFT) polymerization, was electrochemically activated by the ATRP catalyst CuI/2,2′‐bipyridine (bpy) to control the polymerization of methyl methacrylate. Mechanistic study showed that this polymerization was mainly controlled by the ATRP equilibrium. The effect of applied potential, catalyst counterion, catalyst concentration, and targeted degree of polymerization were investigated. The chain‐end functionality was preserved as demonstrated by chain extension of poly(methyl methacrylate) with n‐butyl methacrylate and styrene. This electrochemical ATRP procedure confirms that RAFT CTAs can be activated by an electrochemical stimulus. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 376–381  相似文献   

4.
With the aim of creating highly branched amphiphilic block copolymers, the primary amine end groups of the poly(propylene imine) dendrimers DAB‐dendr‐(NH2)8 and DAB‐dendr‐(NH2)64 were converted to 2‐bromoisobutyramide groups. Poly (styrene‐btert‐butyl methacrylate) (PS‐b‐PtBMA) was synthesized by ATRP from the eight end group initiator, and poly(styrene‐btert‐butyl acrylate) (PS‐b‐PtBA) was synthesized from the 64 end group initiator. The tert‐butyl groups were removed to produce poly(styrene‐b‐methacrylic acid) (PS‐b‐PMAA) and poly(styrene‐b‐acrylic acid) (PS‐b‐PAA). Comparison of size exclusion chromatography (SEC) absolute molecular weight analyses of the polystyrenes with calculated molecular weights showed that the eight end group initiator produced a polystyrene with about eight branches, and that the 64 end group initiator produced polystyrene with many fewer than 64 branches. The PS‐b‐PtBA materials also have many fewer than 64 branches. The PS‐b‐PAA samples dissolved molecularly in DMF but formed aggregates in water even at pH 10. AFM images of the PS‐b‐PtBAs spin coated from THF and DMF onto mica showed aggregates. AFM images of the PS‐b‐PAAs spin coated from various mixtures of DMF and water at pH 10 showed flat disks and worm‐like images similar to those observed with linear PS‐b‐PAAs. Use of a PS‐b‐PAA and a PS‐b‐PMAA as templates for emulsion polymerization of styrene produced latexes 100–200 nm in diameter. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4623–4634, 2007  相似文献   

5.
This contribution describes the polymerization of 2,2,6,6‐tetramethylpiperidin‐4‐yl methacrylate by atom transfer radical polymerization (ATRP). Different catalytic systems are compared. The CuCl/4,4′‐dinonyl‐2,2′‐dipyridyl catalytic system allows a good control over the polymerization and provides polymers with a polydispersity index below 1.2. The successful polymerization of styrene from PTMPM‐Cl macroinitiators by ATRP is then demonstrated. Successful quantitative oxidation of PTMPM‐b‐PS block copolymers leads to poly(2,2,6,6‐tetramethylpiperidinyloxy‐4‐yl‐methacrylate)‐b‐poly(styrene) (PTMA‐b‐PS). The cyclic voltammogram of PTMA‐b‐PS indicates a reversible redox reaction at 3.6 V (vs. Li+/Li). Such block copolymers open new opportunities for the formation of functional organic cathode materials. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

6.
The ability of 2‐vinyl‐4,4‐dimethyl‐5‐oxazolone (VDM), a highly reactive functional monomer, to produce block copolymers by reversible addition fragmentation chain transfer (RAFT) sequential polymerization with methyl acrylate (MA), styrene (S), and methyl methacrylate (MMA) was investigated using cumyl dithiobenzoate (CDB) and 2‐cyanoisopropyl dithiobenzoate (CPDB) as chain transfer agents. The results show that PS‐b‐PVDM and PMA‐b‐PVDM well‐defined block copolymers can be prepared either by polymerization of VDM from PS‐ and PMA‐macroCTAs, respectively, or polymerization of S and MA from a PVDM‐macroCTA. In contrast, PMMA‐b‐PVDM block copolymers with controlled molecular weight and low polydispersity can only be obtained by using PMMA as the macroCTA. Ab initio calculations confirm the experimental studies. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

7.
The nonionic amphiphilic brush polymers such as poly[poly(ethylene oxide) methyl ether vinylphenyl‐co‐styrene] trithiocarbonate [P(mPEGV‐co‐St)‐TTC] and poly[poly(ethylene oxide) methyl ether vinylphenyl‐b‐styrene‐b‐poly(ethylene oxide) methyl ether vinylphenyl] trithiocarbonate [P(mPEGV‐b‐St‐b‐mPEGV)‐TTC] with different monomer sequence and chemical composition are synthesized and their application as macro‐RAFT agent in the emulsion RAFT polymerization of styrene is explored. It is found that the monomer sequence in the brush polymers exerts great influence on the emulsion RAFT polymerization kinetics, and the fast polymerization with short induction period in the presence of P(mPEGV‐co‐St)‐TTC is demonstrated. Besides, the chemical composition in the brush polymer macro‐RAFT agent effect on the emulsion RAFT polymerization is investigated, and the macro‐RAFT agent with high percent of the hydrophobic PS segment leads to fast and well controlled polymerization. The growth of triblock copolymer colloids in the emulsion polymerization is checked, and it reveals that the colloidal morphology is ascribed to the hydrophobic PS block extension, and the P(mPEGV‐co‐St) block almost have no influence just on the size of the colloids. This may be the first example to study the monomer sequence and the chemical composition in the macro‐RAFT agent on emulsion RAFT polymerization, and will be useful to reveal the block copolymer particle growth. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

8.
A new type of chain transfer agent used in reversible addition fragmentation chain transfer (RAFT) polymerization named 9‐anthracenylmethyl (4‐cyano‐4‐(N‐carbazylcarbodithioate) pentanoate) (ACCP) was synthesized with a total yield over 75% by the incorporation of both fluorescent donor and acceptor chromophores. Polymerization of heterotelechelic α,ω end‐labeled dye‐functionalized polystyrene (PS), poly(methyl methacrylate) (PMMA), and poly(n‐butyl methacrylate) (PBMA) with adjustable molecular weights and narrow polydispersity could be conducted by a one‐pot procedure through RAFT polymerization with this bischromophore chain transfer agent. The polymerizations demonstrated “living” controlled characteristics. By taking advantage of the characteristic fluorescence resonance energy transfer (FRET) response between the polymer chain terminals, the variation of chain dimensions in solution from the dilute region to the semidilute region can be monitored by changes in the ratio of the fluorescence intensities of the carbazolyl group to the anthryl group, which lends itself to potential applications in characterizing chain dimensions in solutions for thermodynamic or dynamic studies. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2413–2420  相似文献   

9.
pH‐ and temperature‐responsive poly(N‐isopropylacrylamide‐block?4‐vinylbenzoic acid) (poly(NIPAAm‐b‐VBA)) diblock copolymer brushes on silicon wafers have been successfully prepared by combining click reaction, single‐electron transfer‐living radical polymerization (SET‐LRP), and reversible addition‐fragmentation chain‐transfer (RAFT) polymerization. Azide‐terminated poly(NIPAAm) brushes were obtained by SET‐LRP followed by reaction with sodium azide. A click reaction was utilized to exchange the azide end group of a poly(NIPAAm) brushes to form a surface‐immobilized macro‐RAFT agent, which was successfully chain extended via RAFT polymerization to produce poly(NIPAAm‐b‐VBA) brushes. The addition of sacrificial initiator and/or chain‐transfer agent permitted the formation of well‐defined diblock copolymer brushes and free polymer chains in solution. The free polymer chains were isolated and used to estimate the molecular weights and polydispersity index of chains attached to the surface. Ellipsometry, contact angle measurements, grazing angle‐Fourier transform infrared spectroscopy, and X‐ray photoelectron spectroscopy were used to characterize the immobilization of initiator on the silicon wafer, poly(NIPAAm) brush formation via SET‐LRP, click reaction, and poly(NIPAAm‐b‐VBA) brush formation via RAFT polymerization. The poly(NIPAAm‐b‐VBA) brushes demonstrate stimuli‐responsive behavior with respect to pH and temperature. The swollen brush thickness of poly(NIPAAm‐b‐VBA) brush increases with increasing pH, and decreases with increasing temperature. These results can provide guidance for the design of smart materials based on copolymer brushes. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2677–2685  相似文献   

10.
The benzaldehyde derivatives, such as 2,4‐dimethoxy benzaldehyde (PC1) and p‐anisaldehyde (PC2), were successfully used as photoredox catalysts (PCs) in combination with typical RAFT agent 4‐cyano‐4‐(phenylcarbonothioylthio)pentanoic acid (CTP) for the controlled photoinduced electron transfer RAFT polymerization (PET‐RAFT) of methyl methacrylate (MMA) and benzyl methacrylate (BnMA) at room temperature. The kinetics of the polymerizations showed first order with respect to monomer conversions. Besides, the average number molecular weights (Mn) of the produced polymers increased linearly with the monomer conversions and kept relatively narrow polydispersity (PDI = Mw/Mn). For example, the Mn of PMMA increased from about 3400 to 17,300 g mol−1 with the increasing in monomer conversion from 11% to 85%, and the PDI maintained around 1.36. The living features of polymerizations with the PC1 and PC2 as catalysts have also been further supported by chain extension and synthesis of PMMA‐b‐PBnMA diblock copolymer. As a result, the simplicity and efficiency of benzaldehyde derivatives catalyzed PET‐RAFT polymerization have been demonstrated under mild conditions. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 229–236  相似文献   

11.
The thermoresponsive poly(ionic liquid) of poly[1‐(4‐vinylbenzyl)‐3‐methylimidozolium tetrafluoroborate] trithiocarbonate (P[VBMI][BF4]‐TTC) showing the soluble‐to‐insoluble phase transition in the methanol/water mixture at the upper critical solution temperature (UCST) was synthesized by solution RAFT polymerization and the synthesized P[VBMI][BF4]‐TTC was employed as macro‐RAFT agent to mediate the RAFT polymerization under dispersion condition to afford the thermoresponsive diblock copolymer nanoparticles of poly[1‐(4‐vinylbenzyl)‐3‐methylimidozolium tetrafluoroborate]‐b‐polystyrene (P[VBMI][BF4]‐b‐PS). The controllable solution RAFT polymerization was achieved as indicated by the linearly increasing polymer molecular weight with the monomer conversion and the narrow molecular weight distribution. The P[VBMI][BF4]‐TTC macro‐RAFT agent mediated dispersion polymerization afforded the P[VBMI][BF4]‐b‐PS nanoparticles, the size of which was uncorrelated with the polymerization degree of the P[VBMI][BF4] block. Several parameters including the polymerization degree, the polymer concentration and the water content in the solvent of the methanol/water mixture were found to be correlated with the UCST of the poly(ionic liquid). The synthesized poly(ionic liquid) is believed to be a new thermos‐responsive polymer and will be useful in material science. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 945–954  相似文献   

12.
A well‐defined amphiphilic copolymer of ‐poly(ethylene oxide) (PEO) linked with comb‐shaped [poly(styrene‐co‐2‐hydeoxyethyl methacrylate)‐graft‐poly(ε‐caprolactone)] (PEO‐b‐P(St‐co‐HEMA)‐g‐PCL) was successfully synthesized by combination of reversible addition‐fragmentation chain transfer polymerization (RAFT) with ring‐opening anionic polymerization and coordination–insertion ring‐opening polymerization (ROP). The α‐methoxy poly(ethylene oxide) (mPEO) with ω,3‐benzylsulfanylthiocarbonylsufanylpropionic acid (BSPA) end group (mPEO‐BSPA) was prepared by the reaction of mPEO with 3‐benzylsulfanylthiocarbonylsufanyl propionic acid chloride (BSPAC), and the reaction efficiency was close to 100%; then the mPEO‐BSPA was used as a macro‐RAFT agent for the copolymerization of styrene (St) and 2‐hydroxyethyl methacrylate (HEMA) using 2,2‐azobisisobutyronitrile as initiator. The molecular weight of copolymer PEO‐b‐P(St‐co‐HEMA) increased with the monomer conversion, but the molecular weight distribution was a little wide. The influence of molecular weight of macro‐RAFT agent on the polymerization procedure was discussed. The ROP of ε‐caprolactone was then completed by initiation of hydroxyl groups of the PEO‐b‐P(St‐co‐HEMA) precursors in the presence of stannous octoate (Sn(Oct)2). Thus, the amphiphilic copolymer of linear PEO linked with comb‐like P(St‐co‐HEMA)‐g‐PCL was obtained. The final and intermediate products were characterized in detail by NMR, GPC, and UV. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 467–476, 2006  相似文献   

13.
Well‐defined amphiphilic block copolymers, poly(styrene)‐b‐poly(N‐vinylimidazole) (PS‐b‐PVim), were successfully synthesized by macromolecular design via interchange of the xanthates/reversible addition–fragmentation chain transfer (RAFT) polymerization. The structure of the copolymer based on Vim can be well controlled, and the molecular weight distribution was relatively narrow (PDI = 1.24). The size and morphology of the aggregates of the amphiphilic copolymers were investigated by dynamic light scattering and transmission electron microscope, the results implied that the uniform spheroidal micelles consisting of PS core and PVim corona were assembled, and the catalytic activities of PS‐b‐PVim for the hydrolysis of p‐nitrophenyl acetate at different temperatures were also investigated by high‐performance liquid chromatograph (HPLC); the catalytic activities of diblock copolymers were prominently improved compared with that of PVim homopolymers. Moreover, the catalytic activities of the copolymers followed the Arrhenius behavior in the wide experimental temperature range. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
RAFT grafted montmorillonite (MMT) clays [i.e., N,N‐dimethyl‐N‐(4‐(((phenylcarbonothioyl)thio)methyl)benzyl)ethanammonium‐MMT (PCDBAB‐MMT) and N‐(4‐((((dodecylthio)carbonothioyl)thio)methyl)benzyl)‐N,N‐dimethylethanammo‐nium‐MMT (DCTBAB‐MMT)] of various loadings were dispersed in styrene (S) monomer and the resultant mixtures emulsified and sonicated in the presence of a hydrophobe (hexadecane) into miniemulsions. The stable miniemulsions thus obtained were polymerized to yield encapsulated polystyrene‐clay nanocomposites (PS‐CNs). The molar mass and polydispersity index (PDI) of the PS‐CNs depended on the amount of RAFT agent in the system, in accordance with the features of the RAFT process. The morphology of the PS‐CNs ranged from partially exfoliated to an intercalated morphology, depending on the percentage clay loading. The thermomechanical properties of the PS‐CNs were better than those of the neat PS polymer, and were dependent on the molar mass, PS‐CN morphology and clay loading. The similarities and differences of the PS‐CNs prepared here by miniemulsion polymerization were compared to those prepared using the same RAFT agents and polymer system by bulk polymerization (as reported by us in a previous article). © Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7114–7126, 2008  相似文献   

15.
The reversible addition–fragmentation chain transfer (RAFT) polymerizations of 2‐naphthyl acrylate (2NA) initiated by 2,2′‐azobisisobutyronitrile were investigated with 2‐cyanoprop‐2‐yl 1‐dithionaphthalate (CPDN) as a RAFT agent at various temperatures in a benzene solution. The results of the polymerizations showed that 2NA could be polymerized in a controlled way by RAFT polymerization with CPDN as a RAFT agent; the polymerization rate was first‐order with respect to the monomer concentration, and the molecular weight increased linearly with the monomer conversion. The polydispersities of the polymer were relatively low up to high conversions in all cases. The chain‐extension reactions of poly(2‐naphthyl acrylate) (P2NA) with methyl methacrylate and styrene successfully yielded poly(2‐naphthyl acrylate)‐b‐poly(methyl methacrylate) and poly(2‐naphthyl acrylate)‐b‐polystyrene block polymers, respectively, with narrow polydispersities. The P2NA obtained by RAFT polymerization had a strong ultraviolet absorption at 270 nm, and the molecular weights had no apparent effect on the ultraviolet absorption intensities; however, the fluorescence intensity of P2NA increased as the molecular weight increased and was higher than that of 2NA. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2632–2642, 2005  相似文献   

16.
We describe the synthesis of three novel thermoresponsive copolymers of acrylonitrile (AN) with N‐isopropylacrylamide (NIPAM) by a combination of reversible addition‐fragmentation chain transfer (RAFT) polymerization and atom transfer radical polymerization (ATRP). Linear copolymer polyacrylonitrile (PAN)‐b‐PNIPAM was directly prepared by RAFT polymerization. Comb‐like copolymers were synthesized by ATRP using brominated AN/2‐hydroxyethyl methacrylate copolymers as macroinitiators, which were prepared by RAFT polymerization. FT‐IR, NMR, and GPC were employed to characterize the synthesized copolymers. Results indicate that the polymerization processes can be well controlled and the resultant copolymers have well‐defined structures as well as narrow polydispersity. Then dense films were fabricated from these thermoresponsive copolymers and the surface wettability was evaluated by water contact angle measurements at different temperatures. It is found that the surface wettability is temperature‐dependant and both the transition temperature and decrement of water contact angle are affected by the copolymer shapes as well as the length of PNIPAM blocks. Considering the excellent fiber‐ and membrane‐forming properties of PAN‐based copolymers, the obtained thermoresponsive copolymers are latent materials for functional fibers and membranes. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 92–102, 2009  相似文献   

17.
Linear triblock terpolymers of poly(n‐butyl methacrylate)‐b‐poly(methyl methacrylate)‐b‐poly(2‐fluoroethyl methacrylate) (PnBMA‐PMMA‐P2FEMA) were synthesized by sequential reversible addition fragmentation chain transfer (RAFT) polymerization. Kinetic studies of the homopolymerization of 2FEMA by RAFT polymerization demonstrated controllable characteristics with fairly narrow polydispersities (~1.30). The resultant PnBMA‐PMMA‐P2FEMA triblock terpolymers were characterized via 1H NMR, 19F NMR, and gel permeation chromatography. These polymers formed micellar aggregates in a selective solvent mixture. The as‐formed micelles were analyzed using scanning electron microscopy and dynamic light scattering. It was found that these terpolymers could directly self‐organize into complex micelles in a tetrahydrofuran/methanol mixture with diameters that depended on polymer composition. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

18.
ABA‐type amphiphilic tri‐block copolymers were successfully synthesized from poly(ethylene oxide) derivatives through anionic polymerization. When poly(styrene) anions were reacted with telechelic bromine‐terminated poly(ethylene oxide) ( 1 ) in 2:1 mole ratio, poly(styrene)‐b‐poly(ethylene oxide)‐b‐poly(styrene) tri‐block copolymers were formed. Similarly, stable telechelic carbanion‐terminated poly(ethylene oxide), prepared from 1,1‐diphenylethylene‐terminated poly (ethylene oxide) ( 2 ) and sec‐BuLi, was also used to polymerize styrene and methyl methacrylate separately, as a result, poly (styrene)‐b‐poly(ethylene oxide)‐b‐poly(styrene) and poly (methyl methacrylate)‐b‐poly(ethylene oxide)‐b‐poly(methyl methacrylate) tri‐block copolymers were formed respectively. All these tri‐block copolymers and poly(ethylene oxide) derivatives, 1 and 2 , were characterized by spectroscopic, calorimetric, and chromatographic techniques. Theoretical molecular weights of the tri‐block copolymers were found to be similar to the experimental molecular weights, and narrow polydispersity index was observed for all the tri‐block copolymers. Differential scanning calorimetric studies confirmed the presence of glass transition temperatures of poly(ethylene oxide), poly(styrene), and poly(methyl methacrylate) blocks in the tri‐block copolymers. Poly(styrene)‐b‐poly(ethylene oxide)‐b‐poly(styrene) tri‐block copolymers, prepared from polystyryl anion and 1 , were successfully used to prepare micelles, and according to the transmission electron microscopy and dynamic light scattering results, the micelles were spherical in shape with mean average diameter of 106 ± 5 nm. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

19.
The use of amphiphilic triblock copolymers bearing a reactive alkoxysilane middle block as polymeric stabilizers is reported in this work. A series of poly(ethylene glycol) methyl ether methacrylate‐b‐(3‐trimethoxysilyl)propyl methacrylate‐b‐benzyl methacrylate (PEGMA‐b‐MPS‐b‐BzMA) triblock copolymers were prepared by RAFT solution polymerization and polymerization‐induced self‐assembly (PISA), respectively, where the various block lengths and overall composition were varied. The copolymers prepared by solution polymerization were employed as oil‐in‐water stabilizers where upon application of a catalyst, the 3‐(trimethoxysilyl)propyl methacrylate (MPS) block at the droplet interface was crosslinked to yield capsule‐like structures. The effectiveness of interfacial crosslinking was validated by dynamic light scattering and electron microscopy. In situ self‐assembly by the PISA method resulted in spherical nanoparticles of controllable size that were readily crosslinked by addition of base, with significant enhancement of colloidal stability. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1897–1907  相似文献   

20.
Atom transfer radical polymerization conditions with copper(I) bromide/pentamethyldiethylenetriamine (CuBr/PMDETA) as the catalyst system were employed for the polymerization of tert‐butyl acrylate, methyl acrylate, and styrene to generate well‐defined homopolymers, diblock copolymers, and triblock copolymers. Temperature studies indicated that the polymerizations occurred smoothly in bulk at 50 °C. The kinetics of tert‐butyl acrylate polymerization under these conditions are reported. Well‐defined poly(tert‐butyl acrylate) (PtBA; polydispersity index = 1.14) and poly(methyl acrylate) (PMA; polydispersity index = 1.03) homopolymers were synthesized and then used as macroinitiators for the preparation of PtBA‐b‐PMA and PMA‐b‐PtBA diblock copolymers in bulk at 50 °C or in toluene at 60 or 90 °C. In toluene, the amount of CuBr/PMDETA relative to the macroinitiator was important; at least 1 equiv of CuBr/PMDETA was required for complete initiation. Typical block lengths were composed of 100–150 repeat units per segment. A triblock copolymer, composed of PtBA‐b‐PMA‐b‐PS (PS = polystyrene), was also synthesized with a well‐defined composition and a narrow molecular weight dispersity. The tert‐butyl esters of PtBA‐b‐PMA and PtBA‐b‐PMA‐b‐PS were selectively cleaved to form the amphiphilic block copolymers PAA‐b‐PMA [PAA = poly(acrylic acid)] and PAA‐b‐PMA‐b‐PS, respectively, via reaction with anhydrous trifluoroacetic acid in dichloromethane at room temperature for 3 h. Characterization data are reported from analyses by gel permeation chromatography; infrared, 1H NMR, and 13C NMR spectroscopies; differential scanning calorimetry; and matrix‐assisted, laser desorption/ionization time‐of‐flight mass spectrometry. The assembly of the amphiphilic triblock copolymer PAA90b‐PMA80b‐PS98 within an aqueous solution, followed by conversion into stable complex nanostructures via crosslinking reactions between the hydrophilic PAA chains comprising the peripheral layers, produced mixtures of spherical and cylindrical topologies. The visualization and size determination of the resulting nanostructures were performed by atomic force microscopy, which revealed very interesting segregation phenomena. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4805–4820, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号