首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrochemical theory of capillary systems with narrow pores outlined in Part I of this series is applied to the streaming potential and the electrical hindrance of electrolyte transport across ion selective membranes (Donnan hindrance). Both phenomena are related to the fixed ion concentration. Streaming potentials were measured while using collodion membranes of graded porosity and graded fixed ion concentration. The bulk phases consisted of aqueous KCl solutions with a concentration 2×10−4 n. The streaming potentials were calculated theoretically by using the electrical conductivity data of the membranes given in Part III of this series. The agreement between the experimental results and the predictions of the theory is good. Theory also predicts that a volume flow across the membrane caused by a hydrostatic pressure difference generates a filtration effect the concentration cs of the electrolyte in the solution leaving the membrane on the low pressure side is lower than the concentration c on the high pressure side. The concentration ratio (cs/c) is equal to the ratio (κ/κi) of the electrical conductivity of the high pressure phase κ and that of the pore fluid κi. The hindrance of the electrolyte transport is a transient phenomenon. It disappears slowly if the experiment is continued over a long period of time. This phenomenon, which is of importance in the understanding of ultrafiltration processes using membranes, is discussed in detail. It is compared with the observed changes in the streaming potential as a function of time. The influence of the electrical convection conductivity (electrical surface conductivity) on the streaming potential can be neglected under the chosen experimental conditions. Its influence will be discussed in Part VI of this series.  相似文献   

2.
Poly(acetyl ethylene oxide acrylate‐co‐vinyl acetate) (P(AEOA‐VAc)) was synthesized and used as a host for lithium perchlorate to prepare an all solid polymer electrolyte. Introduction of carbonyl groups into the copolymer increased ionic conductivity. All solid polymer electrolytes based on P(AEOA‐VAc) at 14.3 wt% VAc with 12wt% LiClO4 showed conductivity as high as 1.2 × 10?4 S cm?1 at room temperature. The temperature dependence of the ionic conductivity followed the VTF behavior, indicating that the ion transport was related to segmental movement of the polymer. FTIR was used to investigate the effect of the carbonyl group on ionic conductivity. The interaction between the lithium salt and carbonyl groups accelerated the dissociation of the lithium salt and thus resulted in a maximum ionic conductivity at a salt concentration higher than pure PAEO‐salts system. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
The effect of the dispersion of zinc oxide (ZnO) nanoparticles in the zinc ion conducting gel polymer electrolyte is studied. Changes in the morphology/structure of the gel polymer electrolyte with the introduction of ZnO particles are distinctly observed using X-ray diffraction and scanning electron microscopy. The nanocomposites offer ionic conductivity values of >10?3 S cm?1 with good thermal and electrochemical stabilities. The variation of ionic conductivity with temperature follows the Vogel–Tamman–Fulcher behavior. AC impedance spectroscopy, cyclic voltammetry, and transport number measurements have confirmed Zn2+ ion conduction in the gel nanocomposites. An electrochemical stability window from ?2.25 to 2.25 V was obtained from voltammetric studies of nanocomposite films. The cationic (i.e., Zn2+ ion) transport number (t +) has been found to be significantly enhanced up to a maximum of 0.55 for the dispersion of 10 wt.% ZnO nanoparticles, indicating substantial enhancement in Zn2+ ion conductivity. The gel polymer electrolyte nanocomposite films with enhanced Zn2+ ion conductivity are useful as separators and electrolytes in Zn rechargeable batteries and other electrochemical applications.  相似文献   

4.
A high-conducting salt-doped polymer electrolyte layer has been created here for use in photocell technologies. The solution casting method is used to produce ion conducting film where poly (methyl methacrylate) (PMMA) is used as the host polymer and potassium iodide (KI) as the dopant. The conductivity and amorphic increases of the polymer electrolytes with the addition of salt concentrations helps in the enhancement of the charge transfer properties. Using electrochemical impedance spectroscopy (EIS), ionic conductivity is evaluated where maximum conductivity is 3.99 × 10−6 S cm-1 at 20 wt% KI concentration. Polarized optical microscopy (POM) shows the reduction in crystallinity by salt doping, while Fourier transforms infrared spectroscopy (FTIR) shows the complexation as well as composite nature of the film. Ionic transference number (tion) measurement shows the predominantly ionic nature of this polymer electrolyte.  相似文献   

5.
Ion transport in polymeric electrolytes (PEs) has been studied for approximately a half century, yet the ion conduction mechanism in the PEs is not fully understood. Herein, we report a new approach to understand the ion migration process in poly (ethylene oxide)/Lithium bis(trifluoromethane sulphonyl) imide (PEO/LiTFSI) and poly (ethylene oxide)/Lithium bis(oxalate) borate (PEO/LiBOB) electrolytes based on quantum mechanics. The results show that the coefficient of determination (R2) obtained from the new model exceeds 0.99 for all the PEs, which is far higher than these obtained from the well-known Arrhenius and Vogel-Tammann-Fulcher (VTF) equations. The wavelength (λLi+) of Li-ion migrations or the distance between the occupied site and the neighboring partially-occupied site is the most crucial factor to affect the ionic conductivity of PEs. The higher the λLi+, the better the ionic conductivity. The maximum λLi+ value of the PEs approximates angstrom order of magnitude. The developed ion conduction model opens an avenue to design PEs with a higher ionic conductivity.  相似文献   

6.
Solid electrolytes, such as perovskite Li3xLa2/1−xTiO3, LixLa(1−x)/3NbO3 and garnet Li7La3Zr2O12 ceramic oxides, have attracted extensive attention in lithium-ion battery research due to their good chemical stability and the improvability of their ionic conductivity with great potential in solid electrolyte battery applications. These solid oxides eliminate safety issues and cycling instability, which are common challenges in the current commercial lithium-ion batteries based on organic liquid electrolytes. However, in practical applications, structural disorders such as point defects and grain boundaries play a dominating role in the ionic transport of these solid electrolytes, where defect engineering to tailor or improve the ionic conductive property is still seldom reported. Here, we demonstrate a defect engineering approach to alter the ionic conductive channels in LixLa(1−x)/3NbO3 (x = 0.1~0.13) electrolytes based on the rearrangements of La sites through a quenching process. The changes in the occupancy and interstitial defects of La ions lead to anisotropic modulation of ionic conductivity with the increase in quenching temperatures. Our trial in this work on the defect engineering of quenched electrolytes will offer opportunities to optimize ionic conductivity and benefit the solid electrolyte battery applications.  相似文献   

7.
Solid polymer electrolytes based on poly(vinyl pyrrolidone) (PVP) complexed with potassium periodide (KIO4) salt at different weight percent ratios were prepared using solution-cast technique. X-ray diffraction (XRD) results revealed that the amorphous nature of PVP polymer matrix increased with the increase of KIO4 salt concentration. The complexation of the salt with the polymer was confirmed by Fourier transform infrared (FTIR) spectroscopy studies. The ionic conductivity was found to increase with the increase of temperature as well as dopant concentration. The maximum ionic conductivity (1.421 × 10−4 S cm−1) was obtained for 15 wt% KIO4 doped polymer electrolyte at room temperature. The variation of ac conductivity with frequency obeyed Jonscher power law. The dynamical aspects of electrical transport process in the electrolyte were analyzed using complex electrical modulus. The peaks found in the electric modulus plots have been characterized in terms of the stretched exponential parameter. Optical absorption studies were performed in the wavelength range 200–600 nm and the absorption band energies (direct band gap and indirect band gap) values were evaluated. Using these polymer electrolyte films electrochemical cells were fabricated and their discharge characteristics were studied.  相似文献   

8.
PEO based polymer electrolytes containing ammonium hexafluorophosphate (NH4PF6) and hexafluorophosphoric acid (HPF6), both with PF anion have been studied. The effect of the addition of propylene carbonate (PC) to PEO-NH4PF6 and PEO-HPF6 has been observed to increase in ionic conductivity which is attributed to an increase in free ion concentration due to the dissociation of ion aggregates present at higher acid/salt concentrations. The plasticized polymer electrolytes containing HPF6 show relatively higher conductivity (σmax = 1.02 × 10−4 S/cm at 10 wt% HPF6) as compared to electrolytes containing NH4PF6max = 1.09 × 10−5 S/cm at 10 wt% NH4PF6). Presence of free ions, ion aggregates and their dissociation with the addition of PC has been studied by Fourier Transform Infrared Spectroscopy (FTIR). The change in amorphous phase with PC content was also studied by X-Ray Diffraction (XRD). The variation of conductivity with temperature shows Vogel–Tammen–Fulcher (VTF) behavior, which is associated with the highly amorphous nature of electrolytes. 1H Nuclear magnetic Resonance (NMR) spectra at different temperatures shows line narrowing and suggests the onset of long range ion diffusional motion. Change in surface morphology of polymer electrolytes with the addition of PC is also checked by Scanning Electron Microscopic (SEM) studies.  相似文献   

9.
A novel combination of dispersed phase polymer nanocomposite electrolyte based on PEO8‐LiClO4+ x wt % nano‐CeO2 has been investigated. A model for ion transport mechanism has been proposed to account for substantial enhancement of its electrical conductivity by ~ 2 orders of magnitude at low volume fraction of the filler reinforcement in the polymer nanocomposite films. The strength of the proposed model is based on unambiguous evidences from FTIR, TEM, and conductivity analysis. The FTIR results provide clear role of nanofiller concentration on ion–ion interaction quantified in terms of the fraction of free anion and ion‐pairs present in the nanocomposite films and its excellent correlation with conductivity versus filler concentration. The presence of asymmetry in the ν4(ClO4?) band observed at 625 cm?1 is attributed to its resolved degeneracy suggesting the presence of both uncoordinated and cation‐coordinated ClO4? anion in the matrix due to ion–ion and ion–filler interactions assisted by Lewis acid–base interaction. The enhancement in conductivity at low concentration is possibly due to direct interaction of nano‐CeO2 with both polymer host and anions resulting in the release of ionic charges. Drastic conductivity reduction at higher concentration is related to charge immobilization because of ion/ion‐pair entrapment by local clusters of filler as evidenced in TEM. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 60–71, 2009  相似文献   

10.
Surface and bulk properties of 1-hexyl-3-methylimidazolium chloride [C6mim][Cl] as an ionic liquid (IL) have been investigated by surface tension and electrical conductivity techniques at various temperatures. Results reveal that the ionic liquid behaves as surfactant-like and aggregates in aqueous solution. Critical aggregation concentration (cac) values obtained by conductivity and surface tension measurements are in good agreement with values found in the literature. A series of important and useful adsorption parameters including cac, surface excess concentration (Γ), and minimum surface area per molecule (Amin) at the air + water interface were estimated from surface tension in the presence and absence of different electrolytes. Obtained data show that the surface tension as well as the cac of [C6mim][Cl] is reduced by electrolytes. Also, values of surface excess concentration (Γ) show that the IL ions in the presence of electrolyte have much larger affinity to adsorption at the surface and this affinity increased in aqueous electrolyte solution in the order of I? > Br? > Cl? for counter ion of salts that was explained in terms of a larger repulsion of chloride anions from interface to the bromide and iodide anion as well as difference in their excess polarizability.  相似文献   

11.
Ion transport in the new three-dimensional network polymer electrolytes that are completely amorphous in the solid state has been studied on the example of the matrix model with a monomer—polyethylene glycol diacrylate, cross-linked by radical polymerization. The nature of ionic conductivity in solid polymer electrolytes based on polyethylene glycol diacrylate at different concentrations of salt LiClO4 was studied by methods of electrochemical impedance, differential scanning calorimetry analysis, Fourier transform infrared spectroscopy and quantum chemical modeling. The maximum value of conductivity in the range of 20–100 °C is realized at 20 wt% content of LiClO4. The reason for the low conductivity of the SPE studied is the small degree of dissociation of contact ion pairs. At the increase in the salt content associates of contact pairs Li+ClO 4 ? , dimers and trimers (at LiClO4 >20 wt%) are formed. The appearances of trimers are accompanied by a decrease in conductivity due to lowering of contact pair content.  相似文献   

12.
Plasticizers can be used to change the mechanical and electrical properties of polymer electrolytes by reducing the degree of crystallinity and lowering the glass transition temperature. The transport properties of gel-type ionic conducting membranes consisting of poly(ethylene oxide) (PEO), poly(methyl methacrylate) (PMMA), LiClO4 and dioctyl phthalate, diethyl phthalate or dimethyl phthalate (DMP) are studied. The polymer films are characterized by X-ray diffraction, Fourier transform infrared and impedance spectroscopic studies. It is found that the addition of DMP as the plasticizer in the PEO-PMMA-LiClO4 polymer complex favours an enhancement in ionic conductivity. The maximum conductivity value obtained for the solid polymer electrolyte film at 305 K is 3.529×10 4 S cm–1. Electronic Publication  相似文献   

13.
A series of poly(ethylene glycol)–polyurethane (PEG–PU)/sodium perchlorate (NaClO4) solid electrolytes were prepared, and their properties were characterized with Fourier transform infrared spectroscopy, differential scanning calorimetry, complex impedance analysis, and atomic force microscopy. Results showed that the oxygen atoms of carbonyl and ether oxygen groups had different activities on cations. Both carbonyl and ether oxygen groups participated in the ionic‐transport process in PU‐based electrolytes. There existed a coordination competition between sodium cations and different oxygen atoms in soft and hard segments of PU. For the PEG–PU/NaClO4 system investigated, amorphous regions and interfacial regions between the amorphous and microcrystalline phases were responsible for ionic conduction. A new ionic‐transport mechanism, based on the existence of conduction pathways not only in amorphous regions but also in interfacial regions of microphase‐separated PU‐based electrolytes, is sketched. Moreover, at a particular concentration of doped salt (EO/NaClO4 12), the PEG–PU/NaClO4 complex revealed a phase‐transition point in the morphology and exhibited minimum apparent activation energy and maximum ionic conductivity. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 1246–1254, 2001  相似文献   

14.
Solid ionic conductors, also called solid electrolytes, transport electric current by means of ions. The best known examples of these usually crystalline compounds include doped ZrO2, as well as AgI, β-Al2O3, and CaF2. Ionic conduction in solid electrolytes reaches its maximum value if a partial lattice of a solid compound undergoes transition at elevated temperature to a quasimolten state. The ionic conductivity in such solid compounds is then as high as in molten salts. Solid electrolytes have found many scientific and technological applications; thus, they can be used to study thermodynamic and kinetic problems, and to build fuel cells, batteries, sensors, and chemotronic components.  相似文献   

15.
Lithium ion batteries have shown great promise in electrical energy storage with enhanced energy density, power capacity, charge-discharge rates, and cycling lifetimes. However common fluid electrolytes consisting of lithium salts dissolved in solvents are toxic, corrosive, or flammable. Solid electrolytes with superionic conductivity can avoid those shortcomings and work with a metallic lithium anode, thereby allowing much higher energy densities. Here we present a novel class of solid electrolytes with three-dimensional conducting pathways based on lithium-rich anti-perovskites (LiRAP) with ionic conductivity of σ > 10(-3) S/cm at room temperature and activation energy of 0.2-0.3 eV. As temperature approaches the melting point, the ionic conductivity of the anti-perovskites increases to advanced superionic conductivity of σ > 10(-2) S/cm and beyond. The new crystalline materials can be readily manipulated via chemical, electronic, and structural means to boost ionic transport and serve as high-performance solid electrolytes for superionic Li(+) conduction in electrochemistry applications.  相似文献   

16.
A series of four different dilithium salts of structure F3CSO2N(Li)SO2-(CF2)x-SO2N(Li)SO2CF3, with x = 2, 4, 6, 8 were synthesized and characterized in polyethylene-oxide-based solid polymer electrolytes. Each salt may be thought of as two bis[(perfluoroalkyl)sulfonyl]imide anions linked together by a perfluoroalkyl chain of a particular length. Taken together, this homologous series provides an opportunity to study the effects of linker chain length and degree of fluorination in dianionic (and ultimately polyanionic) salts on the properties, particularly the conductivity, of the salts in various solvating media. SPEs in polyethylene oxide were characterized using scanning calorimetry, X-ray diffraction, 1H and 19F NMR, and electrochemical impedance spectroscopy for SPEs prepared using ethylene-oxide-oxygen-to-lithium (EO:Li) ratios of 10:1 and 30:1. Trends in SPE ionic conductivity with anion structure revealed an unexpected trend whereby ionic conductivity is generally rising with increased length of the perfluoroalkylene linking group in the dianions. This trend could be the result of a decrease in dianion basicity that results in diminished ion pairing and an enhancement in the number of charge carriers with increasing anion fluorine content, thereby increasing ionic conductivity.  相似文献   

17.
In the current work Plasticized sodium ion conducting solid polymer electrolytes (SPEs) based on polyvinyl alcohol: methylcellulose (PVA: MC) and sodium iodide (NaI) as the electrolytic salt are fabricated. The SPE films are created using a renowned solution casting procedure, and the results of the experiments are provided. The development of polymers-salt complexes is supported by the Fourier-transform infrared transform (FTIR) analysis. The degrees of crystallinity of the polymers are noticeably decreased as a result of the glycerol plasticizer, according to X-ray diffraction test. The sample inserted with 40 wt% glycerol has the maximum ionic conductivity, according to electrical impedance spectroscopy (EIS). Electrical equivalence circuits (EEC) are used to explore the electrolytes circuit components. For the highest conducting electrolyte, the number density (n), mobility (µ), and diffusion coefficient (D) of ions are found to be 2 × 1021, 1.79 × 10?6, and 4.59 × 10?8, respectively. A high dispersion of the real component of dielectric permittivity at a lower frequency are used to infer the space charge influence induced by stainless-still (SS) electrodes. The tangent loss spectra show that the bouncing chance per unit time decreases as the glycerol concentration rises.  相似文献   

18.
A series of copolymers of predominantly poly(ethylene oxide) (PEO) with biphenyl (BP) units in the backbone were synthesized. The solid polymer electrolytes (SPEs) were prepared from these copolymers (BP-PEG) employing lithium perchlolate (LiClO4) as a lithium salt and their ionic conductivities were investigated to exploit the structure–ionic conductivity relationships as a function of chain length ratio between the flexible PEO chains and rigid BP units. The ionic conductivity increases with increasing PEO length in BP-PEG. The salt concentrations in BP-PEG/LiClO4 complexes were also changed and the results show that maximum conductivity is obtained at [EO]/[Li+]≈8. The reasons for these findings are discussed in terms of the number of charge carriers and the mobility of the polymer chain.  相似文献   

19.
聚合物固体电解质中的离子状态与导电机理的研究   总被引:5,自引:0,他引:5  
制备得到了一种新颖的聚氨酯和丙烯酸酯复合梳形交联聚合物 (Combcross linkedpolymer) ,并以此聚合物为基体加入不同含量的高氯酸锂盐制得一系列聚合物固体电解质 ,其室温电导率可以达到 3 4× 10 - 5S·cm- 1 .通过Raman、DSC、SEM及电性能等研究了电解质中的盐浓度与离子存在状态及离子电导率之间的关系 .结果显示随着盐浓度的增加 ,聚合物固体电解质中离子对的比例和电导率都迅速增加 ,说明离子对 (由多个醚氧原子、阴离子和阳离子组成 )对体系导电起着积极的作用 .  相似文献   

20.
Enabling all‐solid‐state Li‐ion batteries requires solid electrolytes with high Li ionic conductivity and good electrochemical stability. Following recent experimental reports of Li3YCl6 and Li3YBr6 as promising new solid electrolytes, we used first principles computation to investigate the Li‐ion diffusion, electrochemical stability, and interface stability of chloride and bromide materials and elucidated the origin of their high ionic conductivities and good electrochemical stabilities. Chloride and bromide chemistries intrinsically exhibit low migration energy barriers, wide electrochemical windows, and are not constrained to previous design principles for sulfide and oxide Li‐ion conductors, allowing for much greater freedom in structure, chemistry, composition, and Li sublattice for developing fast Li‐ion conductors. Our study highlights chloride and bromide chemistries as a promising new research direction for solid electrolytes with high ionic conductivity and good stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号