首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
提出了利用不同取代基烯类单体的电子亲和势来判断其负离子聚合反应活性的方法.采用密度泛函理论的B3LYP/6-31G(d)方法优化了不同取代基烯类单体几何构型,在B3LYP/6-311++G(3df,2p)水平上计算了其电子亲和势.通过电子亲和势计算值与文献报道实验数据比较,表明本文采用的计算方法是比较可靠的.结合不同取代基烯类单体的电子亲和势的计算结果,通过与Q-e关系及取代基常数σ数据进行比较表明,电子亲和势可以用来判断不同单体负离子聚合反应的活性高低.  相似文献   

2.
利用2种杂化的密度泛函DFT方法(BHLYP和B3LYP),2种纯DFT方法(BLYP和BP86),以DZP++为基函数对Cl2O5/Cl2O5-的平衡构型进行了量子化学计算,研究了它们的几何构型、相对能量和振动频率,并对Cl2o5/Cl2O5-体系的电子亲和势进行了理论预测.  相似文献   

3.
采用密度泛函理论(DFT)方法:BHLYP、B3LYP、BP86、BLYP,在全电子的双ζ基组加极化函数和弥散函数(DZP+)基组下,计算了全氟代金刚烷(C10F16)及其自由基(C10F15)的总能量、优化几何构型、电子亲和势和谐振频率.在B3LYP水平上所得到的可靠绝热电子亲和势(EAad)分别为: C10F16, 1.06 eV; C10F15, 4.11和 3.03 eV.  相似文献   

4.
NCS自由基与NO反应动力学的理论研究   总被引:7,自引:1,他引:6  
用量子化学密度泛函理论B3LYP/6-31+G*和高级电子相关校正的偶合簇[CCSD(T)/6-311+G*]方法,对NCS自由基与NO反应的机理和动力学进行了理论研究,得到了体系的势能面信息和可能的反应机理.计算了反应的热力学参数及反应能垒.采用传统过渡态理论计算了各反应通道的速率常数.研究结果表明,NCS自由基与NO反应中存在4个反应通道,产物分别为OCS+N2,CS+N2O,ONS+CN和ONCNS.从能量变化和反应速率两方面考虑,NCS+NOOCS+N2应为主反应通道.  相似文献   

5.
低聚芴及其衍生物吸收和发射光谱性质的量子化学研究   总被引:5,自引:0,他引:5  
用DFT/B3LYP方法对低聚物(PF)2n和(PFDBO)n(n=1-4)体系进行了全优化,计算得到两个系列低聚物的电离能PI(v,a)、电子亲和势EA(v,a)、空穴抽取能EHP和电子抽取能EEP等相关能量,并用ZINDO和TD-DFT方法计算其吸收光谱,分析了两系列总能量和HOMO-LUMO能隙随n递增的变化规律及对低聚物稳定性和光谱性质的影响,推断高聚物的发光性质.用CIS方法优化低聚物的S1激发态结构并分析其与发射光谱的关系.计算结果表明,这两个系列低聚物激发态结构中都有使所有骨架原子共平面的趋势.由于插入CH2OCH2,使PFDBO的七元环部分发生较大的扭曲(两个苯环间成42.5°±0.5°的二面角),致使有效共轭链被破坏、能带带隙变宽、吸收发射光谱波长变短.  相似文献   

6.
在CCSD(T)/6-311G(d,p)//B3LYP/6-311G(d,p)+ZPE水平上对反应HCCN+NO的二重态反应势能面进行了计算,得到了4种产物:P1(HCN+NCO),P2(OH+NCCN),P3[HCN+(CNO)]和P4(HCN+CNO).其中产物P1为主要产物,P2为次要产物,P3和P4很难得到.在G2(B3LYP/MP2/CC)水平,对产物P1和P2的反应通道的单点能量进行了校正.  相似文献   

7.
利用两种杂化DFT方法(BHLYP和B3LYP,两种纯DFT方法(BP86和BLYP),以DZP 为基函数对ClOO,ClOOO和ClO3及其负离子的平衡构型进行了量子化学计算,研究了它们的几何构型、相对能量、三种电子亲和势(绝热电子亲和势Ead=E(optimized neutral)-E(optimized anion),垂直电子亲和势Evert=E(optimized neutral)-E(anion at neutral equilibrium geometry)和垂直电子解离能Evd=E(neutral at anion equilibrium)-E(optiminzed anion))和红外振动频率。  相似文献   

8.
用B3LYP/Lan1 2dz方法优化了La2 Cn(n =- 1 ,0 ,+1 )分子的结构 ,计算了La2 C的电子亲和势和离化能 ,并对计算结果进行了讨论。  相似文献   

9.
在密度泛函B3LYP理论下,用6-31G*基函数对富勒烯C70吸附氧原子进行了理论研究。讨论了其几何结构、电子属性、反应能、电离势和电子亲和势。计算结果表明:一个氧原子吸附在C70赤道带上形成具有开环轮烯结构的e,e-C70O是最稳定的。与基态的C70O相比,C70O35具有较大的HOMO-LUMO能隙,较高的电离势和较低的电子亲和势,因此C70O35是稳定的分子。  相似文献   

10.
用密度泛函方法B3LYP/6-311++G(d,p)和高级电子相关的偶合簇法CCSD(T)/6-311++G(d,p)研究了气相离子-分子反应B2H3-+CS2B2H3S-+CS的机理.结果表明,B2H3最可能进攻CS2中碳原子形成三元环中间体,随后通过氢迁移和最终消除CS的反应步骤形成硫原子转移产物H3BBS-+CS,反应大量放热且不需要活化能.B2H3直接对CS2中硫原子进攻夺取硫原子的反应方式存在一定能垒阻碍.计算结果有助于深入了解B2H3,B3H-6和B4H7-等缺电子硼氢负离子的反应行为.  相似文献   

11.
Quantum chemical calculations were carried out on CO oxidation catalyzed by a single gold atom. To investigate the performance of density functional theory (DFT) methods, 42 DFT functionals have been evaluated and compared with high-level wavefunction based methods. It was found that in order to obtain accurate results the functionals used must treat long range interaction well. The double-hybrid mPW2PLYP and B2PLYP functionals are the two functionals with best overall performance. CAM-B3LYP, a long range corrected hybrid GGA functional, also performs well. On the other hand, the popular B3LYP, PW91, and PBE functionals do not show good performance and the performance of the latter two are even at the bottom of the 42 functionals. Our accurate results calculated at the CCSD(T)/aug-cc-pVTZ//mPW2PLYP/aug-cc-pVTZ level of theory indicate that Au atom is a good catalysis for CO oxidation. The reaction follows the following mechanism where CO and O(2) adsorb on Au atom forming an Au(OCOO) intermediate and subsequently O(2) transfer one oxygen atom to CO to form CO(2) and AuO. Then AuO reacts with CO to form another CO(2) to complete the catalytic cycle. The overall energy barrier at 0 K for the first CO oxidation step (Au + CO + O(2)→ AuO + CO(2)) is just 4.8 kcal mol(-1), and that for the second CO oxidation step (AuO + CO → Au + CO(2)) is just 1.6 kcal mol(-1).  相似文献   

12.
The conventional strain energies for azetidine and phosphetane are determined within the isodesmic, homodesmotic, and hyperhomodesmotic models. Optimum equilibrium geometries, harmonic vibrational frequencies, and corresponding electronic energies and zero‐point vibrational energies are computed for all pertinent molecular systems using self‐consistent field theory, second‐order perturbation theory, and density functional theory and using the correlation consistent basis sets cc‐pVDZ, cc‐pVTZ, and cc‐pVQZ. Single point fourth‐order perturbation theory, CCSD, and CCSD(T) calculations using the cc‐pVTZ and the cc‐pVQZ basis sets are computed using the MP2/cc‐pVTZ and MP2/cc‐pVQZ optimized geometries, respectively, to ascertain the contribution of higher order correlation effects and to determine if the quadruple‐zeta valence basis set is needed when higher order correlation is included. In the density functional theory study, eight different functionals are used including B3LYP, wB97XD, and M06‐2X to determine if any functional can yield results similar to those obtained at the CCSD(T) level. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
Four Cl2O3 isomers have been calculated using density functional theory with B3P86 and B3LYP functionals and various basis sets. The energy hypersurfaces of Cl2O3 are very flat and the relative energies of the isomers which have hypervalent characters such as ClOCl(O)O and ClClO3 are strongly dependent on the basis sets. The stability for Cl2O3 isomers are in the order of (1)ClOOOCl(Cs), (2)ClOOOCl(C2), (3)ClClO3 and (4)ClOCl(O)O with ClOCl(O)O being most stable. We suggest that at least the cc-pV6Z(-ghi) basis set for Cl and the cc-pVTZ basis set for O are required to obtain reliable relative stabilities of Cl2O3 isomers with hypervalent characters.  相似文献   

14.
The conventional strain energies of 1,2-dihydroazete, 2,3-dihydroazete, 1,2-dihydrophosphete, and 2,3-dihydrophosphete are determined within the isodesmic, homodesmotic, and hyperhomodesmotic models. Optimum equilibrium geometries, harmonic vibrational frequencies, and corresponding electronic energies and zero-point vibrational energies are computed for all pertinent molecular systems using SCF theory, second-order perturbation theory, and density functional theory and employing the correlation consistent basis sets cc-pVDZ, cc-pVTZ, and cc-pVQZ. Single-point fourth-order perturbation theory, CCSD, and CCSD(T) calculations employing the cc-pVTZ and the cc-pVQZ basis sets are computed using the MP2/cc-pVTZ and MP2/cc-pVQZ optimized geometries, respectfully, to ascertain the contribution of higher order correlation. Three DFT functionals, B3LYP, wB97XD, and M06-2X, are employed to determine whether they can yield results similar to those obtained at the CCSD(T) level.  相似文献   

15.
Atomization reactions are among the most challenging tests for electronic structure methods. We use the first‐principles Weizmann‐4 (W4) computational thermochemistry protocol to generate the W4‐17 dataset of 200 total atomization energies (TAEs) with 3σ confidence intervals of 1 kJ mol−1. W4‐17 is an extension of the earlier W4‐11 dataset; it includes first‐ and second‐row molecules and radicals with up to eight non‐hydrogen atoms. These cover a broad spectrum of bonding situations and multireference character, and as such are an excellent benchmark for the parameterization and validation of highly accurate ab initio methods (e.g., CCSD(T) composite procedures) and double‐hybrid density functional theory (DHDFT) methods. The W4‐17 dataset contains two subsets (i) a non‐multireference subset of 183 systems characterized by dynamical or moderate nondynamical correlation effects (denoted W4‐17‐nonMR) and (ii) a highly multireference subset of 17 systems (W4‐17‐MR). We use these databases to evaluate the performance of a wide range of CCSD(T) composite procedures (e.g., G4, G4(MP2), G4(MP2)‐6X, ROG4(MP2)‐6X, CBS‐QB3, ROCBS‐QB3, CBS‐APNO, ccCA‐PS3, W1, W2, W1‐F12, W2‐F12, W1X‐1, and W2X) and DHDFT methods (e.g., B2‐PLYP, B2GP‐PLYP, B2K‐PLYP, DSD‐BLYP, DSD‐PBEP86, PWPB95, ωB97X‐2(LP), and ωB97X‐2(TQZ)). © 2017 Wiley Periodicals, Inc.  相似文献   

16.
Ab initio calculations of the structural, energetic, vibrational, and magnetic characteristics of the lowest-lying structures for isolated molecules and ions of light-metal tetrahydroaluminates (Li, Na, Be, Mg, and Al) have been performed by the perturbation theory (MP2), quadratic configuration interaction (QCISD(T)), coupled cluster (CCSD(T)), and density functional theory (B3LYP) methods using the 6-31G*, 6-31G**, 6-311+G**, and 6-311++G** basis sets. The trends in the behavior of the molecular characteristics have been analyzed in various related series of these compounds. The results are compared with the data on analogous light-metal tetrahydroborates calculated at the same levels of theory. The differences in structure and stability between analogous hydroborate and alanate complexes are examined. The economical approximation B3LYP/6-311++G**//B3LYP/6-311+G** has been shown to adequately reproduce the results obtained at the higher level of theory CCSD(T)/6-311++G**//MP2/6-31G* even though it requires considerably shorter CPU times and smaller amounts of memory.  相似文献   

17.
The potential energy profiles of five selected bimolecular nucleophilic substitution (SN2) reactions at nitrogen (N) center have been reinvestigated with the CCSD(T), G3[MP2,CCSD(T)], MP2, and some density functional methods. The basis sets of 6‐31+G(d,p) and 6‐311+G(3d,2p) are used for the MP2 and density functional calculations. Taking the relative energies at the CCSD(T)/CBS level of theory as benchmarks, we recommend the MP2, B97‐K, B2K‐PLYP, BMK, ωB97X‐D, M06‐2X, M05‐2X, CAM‐B3LYP, M08‐SO, and ωB97X methods to generally characterize the potential energy profiles for the SN2 reactions at N center. Furthermore, these recommended methods with the relatively small 6‐31+G(d,p) basis set may also be used to perform direct classical trajectory simulations to uncover the dynamic behaviors of the SN2 reactions at N center. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
A set of exchange‐correlation functionals, including BLYP, PBE0, B3LYP, BHandHLYP, CAM‐B3LYP, LC‐BLYP, and HSE, has been used to determine static and dynamic nonresonant (nuclear relaxation) vibrational (hyper)polarizabilities for a series of all‐trans polymethineimine (PMI) oligomers containing up to eight monomer units. These functionals are assessed against reference values obtained using the Møller–Plesset second‐order perturbation theory (MP2) and CCSD methods. For the smallest oligomer, CCSD(T) calculations confirm the choice of MP2 and CCSD as appropriate for assessing the density functionals. By and large, CAM‐B3LYP is the most successful, because it is best for the nuclear relaxation contribution to the static linear polarizability, intensity‐dependent refractive index second hyperpolarizability, static second hyperpolarizability, and is close to the best for the electro‐optical Pockels effect first hyperpolarizability. However, none of the functionals perform satisfactorily for all the vibrational (hyper)polarizabilities studied. In fact, in the case of electric field‐induced second harmonic generation all of them, as well as the Hartree–Fock approximation, yield the wrong sign. We have also found that the Pople 6–31+G(d) basis set is unreliable for computing nuclear relaxation (hyper)polarizabilities of PMI oligomers due to the spurious prediction of a nonplanar equilibrium geometry. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
20.
A combined MP2 and DFT/B3LYP study of the HXeOH–H2O complex is presented. These computational methods have been used to extract information on the structural, energetical and vibrational properties of the complex. Additionally, we have applied anharmonic vibrational calculations based on the MP2-computed intermolecular potential energy surface. Large perturbations both on the subunit structures and their fundamental vibrational modes are found upon complexation. Large changes of anharmonicity of the HXeOH subunit reflects the perturbation of the molecule's electronic structure. The computed BSSE-corrected interaction energies are −40.23 and −38.94 kJ mol−1 at the CCSD(T)//MP2 and CCSD(T)//B3LYP levels of theory, respectively. The estimated deformation energy contribution to the interaction energy is about 5%, which is very large compared with classical hydrogen-bonded complexes. The topological analysis of the Electron Localization Function (ELF) was applied to study further the hydrogen-bonded interaction between the two complex partners. The obtained interaction pattern suggests that the interaction between HXeOH and H2O is a typical hydrogen bond interaction driven mainly by electrostatic interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号