首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
纳晶的制备及其光谱的尺寸依赖性   总被引:1,自引:0,他引:1  
用再沉淀法制备了纳米晶体,向体系中加入水溶性高分子聚乙烯醇(PVA)可有效地抑制纳晶的生长,从而制得了稳定的具有不同粒径的纳晶.光谱研究表明,随着纳晶粒径增加,由于纳晶中分子间相互作用的变化,其吸收峰和激发峰位置都发生了红移,同时纳晶中激基缔合物的荧光发射峰强度减弱,荧光寿命有所延长.  相似文献   

2.
A simple effective strategy was developed by using thermoreversible polymer hydrogels as space-confining nanoreactors to control zeolite nucleation and growth. In particular, the synthesis of zeolite 4A nanocrystals 20-180 nm in size and zeolite X nanocrystals 10-100 nm in size from template-free precursor solution was demonstrated. The synthesized zeolite nanocrystals exhibit good dispersibility, as evidenced by dynamic light-scattering measurements.  相似文献   

3.
Unconventional crystal growth: Core/shell nanocrystals were obtained by growth of a dominant single-crystalline phase of perylene over polycrystalline Au nanoparticle seeds and isolated by coating with polyaniline (PANI) shells. Perylene is released in the presence of sodium dodecyl sulfate (SDS) micelles. The TEM images show (Au@perylene)@PANI nanocomposites before and after complete release of perylene leaving Au@PANI (inset).  相似文献   

4.
[2]- and [3]-rotaxanes with a tetraphenoxy perylene diimide core were synthesized. Hydrogen bonding between the wheel and the imide changes the optical properties of the perylene chromophore: the absorption and fluorescence spectra are red-shifted. The decay times of the rotaxanes are shorter in comparison with that of the axle. Single molecule fluorescence measurements reveal relatively narrow distributions of emission maxima and decay times. The averages are in agreement with ensemble measurements. The observed red shifts make the perylene diimide a suitable chromophore for sensing the position of the wheel on the axle.  相似文献   

5.
The optical and photophysical properties of phenylacetylene dendritic macromolecules based on unsymmetrical branching are investigated using steady-state and time-dependent spectroscopy. Monodendrons, up to the fourth generation, are characterized with and without a fluorescent perylene trap at the core. The higher generation monodendrons without the perylene trap exhibit high molar extinction coefficients (>10(5) M(-1) cm(-1)) and high fluorescence quantum yields (65-81%). When a perylene trap is placed at the core, then the monodendrons typically exhibit high energy transfer quantum yields (approximately 90%), as well as subpicosecond time scale excited-state dynamics, as evidenced by ultrafast pump-probe measurements. The photophysical properties of the unsymmetrical monodendrons are compared to those of phenylacetylene monodendrons with symmetrical branching, which have been described recently. The high fluorescence quantum yields and large energy transfer quantum efficiencies exhibited by the unsymmetrical monodendrons suggest they have potential for applications in molecular-based photonics devices.  相似文献   

6.
A series of high molecular weight copolyimides containing various amount of perylene units in the main chain have been synthesized. The polymers were characterized by FT-IR, NMR, UV/Vis, fluorescence spectroscopy, gel permeation chromatography, differential scanning calorimetry and thermogravimetric analysis measurements. They are highly soluble in conventional solvents such as CHCl3, THF, cyclohexanone etc. and form optically transparent films by solution casting or spin coating. The incorporation of various amount of perylene units in the main chain allows the control of the fluorescence intensity in solution and in solid thin films. The copolyimide containing 0.28 mol% perylene units exhibits the highest solid-state fluorescence. The observed fluorescence intensities of the copolyimides in solid state film decreased with the increasing amount of perylene units in the main chain when the mole ratio of perylene units greater than 0.28 mol% indicating the aggregation of chromophores. The copolyimides are thermally stable up to 400 °C and exhibit glass transition temperatures in the range of 340-360 °C. The number average molecule weight ranges from 1.72×104 to 1.25×105 and the molecule weight distribution mediated between 1.9 and 2.4.  相似文献   

7.
We described, for the first time, the metal-enhanced fluorescence from the CdTe nanocrystals spin coated on silver island films (SIFs). CdTe nanocrystals show approximately 5-fold increase in fluorescence intensity, 3-fold decrease in lifetimes, and reduction in blinking on SIF surfaces that can be observed by ensemble and single-molecule fluorescence studies. The single-molecule study also provides further insight on the heterogeneity in the fluorescence enhancement and lifetimes of the CdTe nanocrystals on both glass and SIF surfaces, which is otherwise not possible to observe using ensemble measurements.  相似文献   

8.
巯基乙酸为稳定剂在MWCNTs上原位生长CdSe量子点   总被引:1,自引:0,他引:1  
以巯基乙酸作为稳定剂在无毒的溶剂中和较低的温度下实现了CdSe量子点在MWCNTs(多壁碳纳米管)上的原位生长,并用TEM、HRTEM、EDS、XRD、XPS和PL等工具对CdSe量子点-MWCNTs异质结(CdSe-MWCNTs)进行了表征.结果表明, CdSe量子点的晶型为立方晶型,平均粒径大约为4 nm, CdSe-MWCNTs也具有一定的荧光性质.  相似文献   

9.
ZnO nanowhiskers are successfully fabricated on an anhydrous zinc acetate coated substrate by its in situ forced hydrolysis at the initial stage without pre-existing ZnO seeds or catalyst. HR-TEM clarified the formation mechanism that in situ forced hydrolysis of an anhydrous zinc acetate layer to ZnO nanocrystals at the initial stage promoted growth of ZnO nanowhiskers by heterogeneous nucleation and growth. ZnO nanowhiskers films show high transmittance over 80% in the visible range and bandgap energy of 3.29 eV. Porous semiconductor ZnO films show good photo-induced electrical properties after various concentrations of DNA molecules labeled with photoactive dye molecules were adsorbed. In situ forced hydrolysis-assisted technique at low temperature can be useful for the fabrication of optoelectronic devices with low cost and without using expensive catalyst.  相似文献   

10.
The formation of fractal silica networks from a colloidal initial state was followed in situ by ion conductivity measurements. The underlying effect is a high interfacial lithium ion conductivity arising when silica particles are brought into contact with Li salt-containing liquid electrolytes. The experimental results were modeled using Monte Carlo simulations and tested using confocal fluorescence laser microscopy and ζ-potential measurements.  相似文献   

11.
Absorption. fluorescence and laser properties of perylene, benzo(ghi)perylene and coronene are studied experimentally (under the same conditions) and quantum chemically at room (293 K) and at low (77 and 4 K) temperatures and direct comparison is made between the results for each molecule. All the main absorption and fluorescence parameters such as oscillator strength, fe, quantum yield, gamma, decay time, tauf, fluorescence rate constant, kf (Einstein coefficient, A) and intersystem crossing rate constant, kST, are measured or calculated. The systems of singlet and triplet levels for these compounds are simulated and analyzed. Triplet states mixing with the lowest singlet S1 state are determined. The low values of kST found are explained. The possible vibronic coupling in the molecule coronene is discussed. The nature of the three fluorescence bands of coronene observed is interpreted. The change in the arrangement of the singlet and triplet levels of the studied compounds is interpreted quantum-chemically. It is found that at room temperature (293 K), only perylene shows laser action, while all three compounds show good laser oscillation at low temperature (< 100 K). The differences in the laser properties of these compounds are explained by the inversion of the Sp(1La) and Sinfinity(1Lb) levels which occurs in the transition from perylene to benzo(ghi)perylene. Chemical properties of the compounds studied are outlined. Linear and quasi-linear fluorescence spectra of perylene and benzo(ghi)perylene, obtained at 77 and 4 K. can be used in the identification of these compounds.  相似文献   

12.
A simple and efficient alcohol thermal technique was applied to control the growth of the dimensions and morphology of ZnO nanostructures under mild conditions, where surfactant was not necessary. The size of ZnO nanocrystals increased with growth temperature and they transformed into nanorods with different aspect ratios through tuning the reaction time. The length of nanorods increased significantly with the reaction time, but their thickness only slightly increased. The as-prepared ZnO nanocrystals were monocrystalline and the growth orientation of ZnO nanorods was [001]. Photoluminescence measurements showed a blue shift in violet emission with a reduction in crystal size and revealed the quantum confinement effect. Electron irradiation induced structural damage was observed in the ZnO nanorods synthesized at 120 degrees C. Experimental results proved that the possible growth mechanism of ZnO nanostructures was oriented attachment.  相似文献   

13.
We used trioctylphosphine oxide (TOPO) capped colloidal InP nanocrystals (Q-InP|TOPO) to explore the potential of solution 1H NMR spectroscopy in studying in situ the capping and capping exchange of sterically stabilized colloidal nanocrystals. The spectrum of Q-InP|TOPO shows resonances of free TOPO, superimposed on broadened spectral features. The latter were assigned to TOPO adsorbed at Q-InP by means of pulsed field gradient diffusion NMR and 1H-13C HSQC spectroscopy. The diffusion coefficient of Q-InP|TOPO nanocrystals was inferred from the decay of the adsorbed TOPO NMR signal. The corresponding hydrodynamic diameter correlates well with the diameter of Q-InP. By using the resolved methyl resonance of adsorbed TOPO, the packing density of TOPO at the InP surface can be estimated. Spectral hole burning was used to demonstrate explicitly that the adsorbed TOPO resonances are heterogeneously broadened. Exchange of the TOPO capping by pyridine was demonstrated by the disappearance of the resonances for adsorbed TOPO and the appearance of pyridine resonances in the 1H NMR spectrum. These results show that solution NMR spectroscopy should be considered a powerful technique for the in situ study of the capping of sterically stabilized colloidal nanocrystals.  相似文献   

14.
A new multi-channel laser-induced fluorescence (LIF) probe with novel optical fiber probe geometry has been designed and integrated into a cone penetrometer testing (CPT) system for in situ contamination detection. The system is capable of collecting excitation and emission matrices (EEMs) of subsurface contaminants as a function of depth in seconds. Compared to our previous multi-channel LIF-CPT system, the new system is faster and more compact, with reduced probe size and sampling area. This article describes the first field demonstration of the system at Hanscom Air Force Base, Massachusetts. One contaminated site within the base was characterized through in situ measurements of 26 LIF-CPT pushes. To validate the LIF results, core samples taken at five locations were analyzed by both on-site LIF measurements and by off-site laboratory analyses with EPA methods. The comparison of the LIF and laboratory results is presented, along with the results of the in situ measurements.  相似文献   

15.
Changes in membrane fluidity during myogenesis have been studied by fluorescence microscopy of individual cells growing in monolayer cultures of embryonic chick skeletal muscle cells. Membrane fluidity was determined by the techniques of fluorescence photobleaching recovery (FPR), with the use of a lipid-soluble carbocyanine dye, and by fluorescence depolarization (FD), with perylene used as the lipid probe. The fluidity of myoblast plasma membranes, as determined from FPR measurements in membrane areas above nuclei, increased during the period of myoblast fusion and then returned to its initial level. The membrane fluidity of fibroblasts, also found in these primary cultures, remained constant. The fluidity in specific regions along the length of the myoblast membrane was studied by FD, and it was observed that the extended arms of the myoblast have the highest fluidity on the cell and that the tips at the ends of the arms had the lowest fluidity. However, since the perylene probe used in the FD experiments appeared to label cytoplasmic components, changes in fluidity measured with this probe reflect changes in membrane fluidity as well as in cytoplasmic fluidity. The relative change in each of these compartments cannot yet be ascertained. Tips have specialized surface structures, filopodia and lamellipodia, which may be accompanied by a more immobile membrane as well as a more rigid cytoplasm. Rounded cells, which may also have a more convoluted surface structure, show a lower apparent membrane fluidity than extended cells.  相似文献   

16.
Quantification of quantum dots (QDs) is essential to the quality control of QD synthesis, development of QD-based LEDs and lasers, functionalizing of QDs with biomolecules, and engineering of QDs for biological applications. However, simple and accurate quantification of QD concentration in a variety of buffer solutions and in complex mixtures still remains a critical technological challenge. Here, we introduce a new methodology for quantification of QDs via single-particle counting, which is conceptually different from established UV-vis absorption and fluorescence spectrum techniques where large amounts of purified QDs are needed and specific absorption coefficient or quantum yield values are necessary for measurements. We demonstrate that single-particle counting allows us to nondiscriminately quantify different kinds of QDs by their distinct fluorescence burst counts in a variety of buffer solutions regardless of their composition, structure, and surface modifications, and without the necessity of absorption coefficient and quantum yield values. This single-particle counting can also unambiguously quantify individual QDs in a complex mixture, which is practically impossible for both UV-vis absorption and fluorescence spectrum measurements. Importantly, the application of this single-particle counting is not just limited to QDs but also can be extended to fluorescent microspheres, quantum dot-based microbeads, and fluorescent nano rods, some of which currently lack efficient quantification methods.  相似文献   

17.
苝及其衍生物的分子结构, 荧光性质及激发态的动力学过程一直是十分活跃的研究课题[1], 因为苝具有很高的荧光量子产率和光稳定性, 因而苝及其衍生物经常作为激光染料, 荧光探针分子或显示用液晶等[2,3,4]。  相似文献   

18.
Cubic boron nitride (cBN) is synthesized by a low-temperature solid state synthesis and in situ phase transformation route with NH(4)BF(4), B, NaBH(4) and KBH(4) as the boron sources and NaN(3) as the nitrogen source. Furthermore, two new strategies are developed, i.e., applying pressure on the reactants during the reaction process and introducing the structural induction effect. These results reveal that the relative contents of cBN are greatly increased by applying these new strategies. Finally, almost pure cBN (~90%) crystals are obtained by reacting NH(4)BF(4) and NaN(3) at 250 °C and 450 MPa for 24 h, with NaF as the structural induction material. The heterogeneous nucleation mechanism can commendably illuminate the structure induction effect of NaF with face center cubic structure. In addition, the induction effect results in the cBN nanocrystals presenting obvious oriented growth of {111} planes.  相似文献   

19.
徐业伟  朱方华  张海连  王鹏  张林 《应用化学》2009,26(11):1269-1272
以苝四酸酐为原料合成了1,7-二溴-3,4,9,10-苝四酸酐(PeryBr2)、N,N′-二(十二烷基)-1,7-二溴-3,4,9,10-苝四羧酸二酰亚胺(DD-PeryBr2)和N,N′-二(十二烷基)-1,7-二对叔丁基苯氧基-3,4,9,10-苝四羧酸二酰亚胺(DD-PeryBp2) 3种苝四羧酸二酰亚胺类化合物,并对其结构和性能利用紫外-可见吸收光谱、傅立叶红外光谱、核磁共振、质谱、热分析和荧光光谱测试技术进行了表征和测试。 结果表明,DD-PeryBp2能很好的溶于甲苯、氯仿、四氢呋喃等常用有机溶剂。 紫外可见最大吸收波长和荧光最大发射波长分别为548和576 nm。 DD-PeryBp2具有很好的热稳定性,质量损失5%时的温度为433 ℃。  相似文献   

20.
The principal values of the rotational diffusion tensor of perylene and 9,10-dimethylanthracene in ethanol are evaluated from temperature-dependence measurements of the degree of fluorescence polarization upon exciting the molecules into two perpendicularly polarized transitions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号