首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 788 毫秒
1.
Transition-metal-free oxides were studied as heterogeneous catalysts for the sustainable epoxidation of alkenes with aqueous H?O? by means of high throughput experimentation (HTE) techniques. A full-factorial HTE approach was applied in the various stages of the development of the catalysts: the synthesis of the materials, their screening as heterogeneous catalysts in liquid-phase epoxidation and the optimisation of the reaction conditions. Initially, the chemical composition of transition-metal-free oxides was screened, leading to the discovery of gallium oxide as a novel, active and selective epoxidation catalyst. On the basis of these results, the research line was continued with the study of structured porous aluminosilicates, gallosilicates and silica-gallia composites. In general, the gallium-based materials showed the best catalytic performances. This family of materials represents a promising class of heterogeneous catalysts for the sustainable epoxidation of alkenes and offers a valid alternative to the transition-metal heterogeneous catalysts commonly used in epoxidation. High throughput experimentation played an important role in promoting the development of these catalytic systems.  相似文献   

2.
The design of new amphoteric catalysts is of great interest for several industrial processes, especially those covering dehydration and dehydrogenation phenomena. Adsorption microcalorimetry was used to monitor the design of mixed oxides of zinc with Group 3 elements (aluminium, gallium, indium) with amphoteric character and enhanced specific surface area. Acid-base features were found to evolve non-linearly with the relative amounts of metal, and the strengths of the created acidic or basic sites were measured by adsorption microcalorimetry. A panel of bifunctional catalysts of various acid-base (amounts, strengths) and redox character was obtained. Besides, special interest was given to In-Zn mixed oxides for their enhanced basicity: this series of catalysts displays important basic features of high strength (q(diff) (SO? ads.) > 200 kJ mol(SO?)?1 in substantial amounts (1 - 2 μmol m(catalyst)?2), whose impact on efficiency or selectivity in catalytic dehydration/dehydrogenation can be valuable.  相似文献   

3.
A set of new titanium-silsesquioxane epoxidation catalysts was discovered by exploring the hydrolytic condensation of a series of trichlorosilanes in highly polar solvents by means of high-speed experimentation techniques. The most promising silsesquioxane leads were prepared on a conventional laboratory scale and fully characterised. The lead generated by the hydrolytic condensation of tBuSiCl(3) in DMSO consisted of a set of incompletely condensed silsesquioxane structures, whereas that obtained from the hydrolytic condensation of tBuSiCl(3) in water consisted of a single silsesquioxane structure, tBu(2)Si(2)O(OH)(4). This is the first reported example of the use of this silsesquioxane as a precursor for active Ti catalysts. The Ti complexes prepared with tBu(2)Si(2)O(OH)(4) were supported on silica to produce active heterogeneous epoxidation catalysts.  相似文献   

4.
构建了用于催化烯烃与过氧化氢环氧化反应的高效、 绿色催化反应体系. 首先, 通过水热合成法制备了纳米SnO2, 并在320 ℃下煅烧. 随后, 对所有催化剂进行X射线衍射(XRD)、 紫外-可见漫反射光谱(UV-Vis)、 傅里叶变换红外光谱(FTIR)、 扫描电子显微镜(SEM)和透射电子显微镜(TEM)表征. 进一步将催化剂用于以H2O2水溶液为氧化剂环氧化各种官能化烯烃(包括环烯烃, 苯乙烯和直链烯烃)的反应, 以高转化率和高选择性得到了环氧化物. 在相似的反应条件下, 发现合成的纳米SnO2-170催化剂在催化1-甲基环己烯与H2O2的环氧化反应中的活性最佳, 在2 h内1-甲基环己烯的转化率达到100%, 环氧化物选择性达到100%.  相似文献   

5.
Direct C−H bond transformation has been regarded as one of the most important areas in organic synthesis in both academia and industry. However, the heterogeneous transition-metal-free catalysis of direct C−H bond transformation has remained a contemporary challenge. To tackle this challenge, we designed and constructed a porous phenanthroline-based polymer (namely POP-Phen) via free radical polymerization of vinyl-functionalized phenanthroline monomers. POP-Phen shows excellent catalytic performances in transition-metal-free catalyzed C−H arylation, even better than those of the corresponding homogeneous catalyst, which is mainly attributed to the high density of catalytically active sites in the heterogeneous catalyst. Kinetic isotope experiments and spectral characterizations demonstrate the electron-transfer between the heterogeneous catalyst and the base (t-BuOK), a key step for C−H activation. We believe that this porous organic phenanthroline polymer could open a new door for the design of novel heterogeneous transition-metal-free catalysts for direct C−H activation.  相似文献   

6.
We report a modular approach toward polymer-supported, metalated, salen catalysts. This strategy is based on the synthesis of monofunctionalized Mn- and Co-salen complexes attached to a norbornene monomer via a stable phenylene-acetylene linker. The resulting functionalized monomers can be polymerized in a controlled fashion using ring-opening metathesis polymerization. This polymerization method allows for the synthesis of copolymers, resulting in an unprecedented control over the catalyst density and catalytic-site isolation. The obtained polymeric manganese and cobalt complexes were successfully used as supported catalysts for the asymmetric epoxidation of olefins and the hydrolytic kinetic resolution of epoxides. All polymeric catalysts showed outstanding catalytic activities and selectivities comparable to the original catalysts reported by Jacobsen. Moreover, the copolymer-supported catalysts are more active and selective than their homopolymer analogues, providing further proof that catalyst density and site isolation are key toward highly active and selective supported salen catalysts.  相似文献   

7.
Preparation, characterization, and catalytic properties of bimetallic coordination polymer constructed from 2‐aminoterephthalic acid as linker, zinc cations as node, and cis‐dioxo molybdenum units as catalytic active sites are reported via two pathways. Molybdenum centers were placed in N,O positions created by condensation reaction of 2‐aminoterephthalic acid with salicylaldehyde while zinc cations coordinated via carboxylic acid groups of linker to achieve infinite chains of metalo‐ligand. The obtained coordination polymer was fully characterized and its catalytic properties in the epoxidation of olefins with tert‐butyl hydroperoxide (TBHP) described. In comparison with previously reported heterogenized molybdenum catalysts, this new coordination polymer exhibited good conversion as well as high selectivity in the epoxidation of olefins. The catalyst is stable under ambient conditions and could be reused as active catalyst for at least five times.  相似文献   

8.
Oxides of transition metals could be suitable alternatives to catalysts based on noble metals in the oxidation processes used for the abatement of volatile organic compounds. Mixed oxides of transition metals can exhibit good efficiency and thermal stability, as well as being inexpensive. In this work, oxide catalysts containing various combinations of Cu, Co, Ni, Mn, and Al, grained or supported on oxidised aluminium foil Al2O3/Al, were studied in terms of their chemical and physical properties, including their chemical composition, porous structure, phase composition, reducibility, and activity in total ethanol oxidation. Ternary co-precipitated catalysts in the form of grains obtained from layered double hydroxide-like precursors were highly active, especially those containing manganese. Deposition of the selected precursors on an anodised aluminium foil-support afforded less active catalysts, mainly because the required metal molar ratios were not achieved, and insufficient amounts of metals were deposited. However, by controlling the preparation conditions (pH), higher loading of active components and higher catalytic activity were obtained.  相似文献   

9.
This works provides an introduction to support vector machines (SVMs) for predictive modeling in heterogeneous catalysis, describing step by step the methodology with a highlighting of the points which make such technique an attractive approach. We first investigate linear SVMs, working in detail through a simple example based on experimental data derived from a study aiming at optimizing olefin epoxidation catalysts applying high-throughput experimentation. This case study has been chosen to underline SVM features in a visual manner because of the few catalytic variables investigated. It is shown how SVMs transform original data into another representation space of higher dimensionality. The concepts of Vapnik-Chervonenkis dimension and structural risk minimization are introduced. The SVM methodology is evaluated with a second catalytic application, that is, light paraffin isomerization. Finally, we discuss why SVMs is a strategic method, as compared to other machine learning techniques, such as neural networks or induction trees, and why emphasis is put on the problem of overfitting.  相似文献   

10.
采用新型无溶剂反应和回流的方法制得锰钾矿型氧化镁(K-OMS-2),同时采用常规方法制得氧化镁,并测试不同催化剂对工业排放气中有机挥发性物质(VOCs)中的模型化合物––乙酸乙酯和乙酸丁酯的催化氧性能.采用N2吸附-脱附、X射线衍射、扫描电镜、程序升温还原和X射线光电子能谱等技术对催化剂进行了表征.所有氧化镁样品均表现出很高的催化乙酸乙酯和乙酸丁酯氧化生成CO2的活性,且制备方法对催化剂性能起着重要作用.新型无溶剂法制得的K-OMS-2纳米棒样品比常规的回流法制得样品表现出更好的催化性能,含锰钾矿型氧化镁的样品比常规方法制得样品表现出更高的活性.性能最好的催化剂也表现出较高的稳定性,在213和202 oC条件下,可分别使90%的乙酸乙酯和乙酸丁酯转化为CO2.催化剂性能的显著差异清楚地表明,对于所选VOCs氧化反应,采用新型无溶剂法制得的K-OMS-2纳米棒样品比常规法制备的氧化镁混合物更好,这可能与样品结构中含有更高的Mn平均氧化态有关.本文表明了催化剂性能与其表面化学性质间存在显著的关联,显示了K-OMS-2内在性质决定了其高的催化性能.  相似文献   

11.
Cyclohexane epoxide, which contains highly active epoxy groups, plays a crucial role as an intermediate in the preparation of fine chemicals. However, controlling the epoxidation pathway of cyclohexene is challenging due to issues such as the allylic oxidation of cyclohexene and the ring opening of cyclohexane epoxide during the cyclohexene epoxidation process to form cyclohexane oxide. This review focuses on the structure-activity relationships and synthesis processes of various heterogeneous transition metal-based catalysts used in cyclohexene epoxidation reactions, including molybdenum(Mo)-based, tungsten(W)-based, vanadium(V)-based, titanium(Ti)-based, cobalt(Co)-based, and other catalysts. Initially, the mechanism of cyclohexene epoxidation by transition metal-based catalysts is examined from the perspective of catalytic active centers. Subsequently, the current research of cyclohexene epoxidation catalysts is summarized based on the perspective of catalyst support. Additionally, the differences between alkyl hydroperoxide, hydrogen peroxide (H2O2), and oxygen (O2) as oxidants are analyzed. Finally, the main factors influencing catalytic performance are summarized, and reasonable suggestions for catalyst design are proposed. This work provides scientific support for the advancement of the olefin epoxidation industry.  相似文献   

12.
Metalloporphyrins and crown ether groups were simultaneously supported on chloromethylated polystyrene resin to produce a series of polymer-supported catalysts. The synthesis of these catalysts has been studied. The influence of pH, concentrations of NaOCl and phase transfer catalysts on the epoxidation of styrene catalyzed by these catalysts has also been investigated. The experimental results show that manganese(III) porphyrin bound to chloromethylated polystyrene which bears crown ether groups is effective catalysts for the epoxidation of styrene by sodium hypochlorite. The introduction of crown ether groups increases the catalytic efficiency of supported metalloporphyrins. The kinetics of epoxidation catalyzed by supported manganese(III) porphyrins obeys Michaelis-Menten equation—the characteristic of enzyme-driven reaction.  相似文献   

13.
The design and synthesis of highly active non-noble metal oxide catalysts, such as transition- and rare-earth-metal oxides, have attracted significant attention because of their high efficiency and low cost and the resultant potential applications for the degradation of volatile organic compounds(VOCs). The structure-activity relationships have been well-studied and used to facilitate design of the structure and composition of highly active catalysts. Recently, non-noble metal oxides with porous structures have been used as catalysts for deep oxidation of VOCs, such as aromatic hydrocarbons, aliphatic compounds, aldehydes, and alcohols, with comparable activities to their noble metal counterparts. This review summarizes the growing literature regarding the use of porous metal oxides for the catalytic removal of VOCs, with emphasis on design of the composition and structure and typical synthetic technologies.  相似文献   

14.
缺电子烯烃的不对称环氧化反应是有机合成领域最具有挑战性的课题之一。手性联萘酚配体所修饰的催化剂是一种很优异的C2轴对称手性诱导源,可以催化各种α,β-不饱和羰基化合物如α,β-不饱和酮、α,β-不饱和羧酸脂等的不对称环氧化反应,具有良好的催化活性和对映选择性。本文对由手性联萘酚类配体所修饰的小分子催化剂、聚合物负载的催化剂和自负载催化剂在不饱和羰基化合物的催化不对称环氧化反应中的应用进行了综述,探讨了催化剂结构、配位金属原子、添加物、氧化剂、溶剂和反应温度等因素对手性联萘酚催化剂催化效能和对映选择性的影响。  相似文献   

15.
The magnetic polymer microsphere catalysts based on phosphotungstic acid quaternary ammonium salt were designed and prepared in order to improve the performance and reusability of the catalysts during the epoxidation of cyclohexene. The structure, particle size and surface property of the new catalysts were characterized by FTIR, laser particle size analysis and SEM, respectively. And the reactivity of the catalysts was detected in cyclohexene epoxidation. Among the obtained catalysts, PS-double-D-PW4 catalyst exhibited the best catalytic performance and high stability for cyclohexene epoxidation. The results showed that the optimum yield of epoxycyclohexane was 83% with a selectivity above 95% after 7 h. And the catalyst still showed a conversion above 78% after six runs.  相似文献   

16.
A novel cobalt supported on boron nitride (CoBNT) heterogeneous catalyst for the synthesis of α-amino quinoline phosphonates (AQPs) is reported in the present work. The CoBNT was synthesised by simply mixing boron nitride in a solution of cobalt acetate, under an inert atmosphere for 7 d followed by filtration; the yield was 94%. It exhibited excellent catalytic properties for the synthesis of 16 novel AQPs in a one pot mixture containing 2-methoxy 3-formyl quinoline, aniline derivatives and diethyl phosphite. Reactions were rapid, products were easily worked-up and were obtained in more than 90% yield. The CoBNT also exhibited higher catalytic activity than conventional catalysts and was re-used five times without significant decrease in catalytic activity.  相似文献   

17.
Four new kinds of heterogeneous catalysts for olefins epoxidation were obtained by grafting diamines on organic polymer–inorganic hybrid material, zirconium poly (styrene‐phenylvinylphosphonate)‐phosphate (ZPS‐PVPA), and subsequently coordinating with Schiff base Mo(VI) complexes. The catalysts were characterized by IR, XPS, SEM and TEM. All catalysts were evaluated through the epoxidation of olefins using tert‐BuOOH as oxidant. The heterogeneous catalysts possess the advantages of high conversion, selectivity and excellent reusability. The catalysts were easily separated from the reaction systems and could be reused 13 times without significant loss of catalytic activity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Recent studies on iron-based heterogeneous catalysts for selective oxidation of hydrocarbons are reviewed with emphasis on the partial oxidation of methane and the epoxidation of alkenes. High dispersion of iron sites is essentially important for the selective oxidations. The effective catalysts include immobilized or encapsulated iron complexes, iron-doped metal oxides such as Fe3+-doped silica, iron-containing microporous and mesoporous materials, and iron-containing compounds with isolated iron sites typified by iron phosphate. The structure-reactivity relationships and the factors affecting the catalytic performances are discussed with the aim to uncover the requirements of the active iron sites in target-selective oxidation.  相似文献   

19.
The structures and the chemical nature of gallium species in gallium-containing zeolite catalysts prepared by hydrothermal synthesis and post-synthesis treatments are discussed based on the results of X-ray absorption spectroscopy (XAS), including X-ray absorption near edge structure (XANES) and Extended X-ray absorption fine structure (EXAFS), and nuclear magnetic resonance (NMR) investigations. The in-situ analysis of properties of gallium active sites during oxidation/reduction cycles has been found to be further helpful on the understanding of the catalytic role of gallium species in the aromatization of alkanes.  相似文献   

20.
Recent studies on iron-based heterogeneous catalysts for selective oxidation of hydrocarbons are reviewed with emphasis on the partial oxidation of methane and the epoxidation of alkenes. High dispersion of iron sites is essentially important for the selective oxidations. The effective catalysts include immobilized or encapsulated iron complexes, iron-doped metal oxides such as Fe3+-doped silica, iron-containing microporous and mesoporous materials, and iron-containing compounds with isolated iron sites typified by iron phosphate. The structure-reactivity relationships and the factors affecting the catalytic performances are discussed with the aim to uncover the requirements of the active iron sites in target-selective oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号