首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Infrared spectra in the vapour, liquid, and crystalline states and Raman spectra in the liquid and crystalline states have been obtained for cyclopropyl methyl ketone and for methyl cyclopropylcarboxylate. In cyclopropyl methyl ketone, the dominant conformer in the liquid and vapour states, the cis, has been shown to exist exclusively in the crystal. In methyl cyclopropylcarboxylate, the conformer dominant in the liquid and vapour states has been demonstrated to exist in the crystal. Vibrational assignments are made for the ring modes and for those modes which are sensitive to conformational changes.  相似文献   

2.
The stereoselective hydride reduction of the cis- and trans-substituted cyclopropyl ketones was systematically investigated using a series of structurally simplified substrates, trans-[tert-butyldiphenylsilyloxymethyl]cyclopropyl ketones 1a-e and trans-(benzyloxymethyl)cyclopropyl methyl ketone (2), and the corresponding cis congeners 3a,b,e and 4. The results showed that, not only in the reduction of the cis-substituted cyclopropyl ketones but also in that of the trans-substituted ketones, high stereoselectivity can be realized when the substrate has a bulky substituent on the cyclopropane ring, even though it is attached to the position trans to the acyl moiety. Ab initio calculations based on the density functional theory (DFT) of cyclopropyl ketones showed that (1) the bisected s-cis and s-trans conformers were the only two minimum energy conformers, while the s-cis conformer was more stable than the s-trans and (2) a bulky alkyl group in the acyl moiety and a cis substituent on the cyclopropane ring made the bisected s-cis conformer much more stable. On the basis of these calculations and experimental results, it is likely that the more stable the bisected s-cis conformer of the substrate, the more stereoselective the hydride reduction. Thus, the stereochemistry can be explained by hydride attack on the bisected s-cis conformation of the substrate from the less-hindered face. The predictability of the stereochemical results is predicated on the bisected s-cis transition-state model, which is very important from the viewpoint of synthetic organic chemistry.  相似文献   

3.
Thermal decomposition of the in situ generated lithium salt of the tosylhydrazone derivative of cyclopropyl trimethylsilylmethyl ketone gave 1-cyclopropyl-1-trimethylsilylethylene, a product of exclusive silyl migration. Thermal decomposition of the sodium salts of tosylhydrazone derivatives of 1-trimethylsilylcyclopropyl alkyl ketones also gave methylenecyclopropane products derived from trimethylsilyl migration. These reactions were interpreted in terms of rapid trimethylsilyl migration to carbene-like centers that compete effectively with ring expansion processes of cyclopropylcarbenes. Computational studies (B3LYP/6-31G) suggest that cyclopropyl stabilization of carbenes is more effective than beta-trimethylsilyl stabilization. However, beta-trimethylsilyl stabilized conformations are easily attained, and these conformations can lead to silyl migrations. There are two minimum energy conformations of methyl-1-trimethylsilylcyclopropylcarbene, 27, and the rotational barrier to interconversion of these conformations (5.4 kcal/mol) is substantially lower than in the parent cyclopropylcarbene (15 kcal/mol). The onset of a stabilizing interaction in the transition state between the carbene vacant orbital with the adjacent Si-C sigma-orbital is proposed. Computational studies also show a very small (2.0 kcal/mol) barrier for trimethylsilyl migration in trimethylsilylmethyl cyclopropylcarbene, 11.  相似文献   

4.
Geometric parameters, harmonic and anharmonic vibrational frequencies, conformer energy differences and barriers to internal rotation were obtained for dicyclopropyl ketone (DCPK) in the ground electronic state through MP2, DFT, CCSD and CCSD(T) calculations. VFPA was used to improve the estimations of conformer energy differences and heights of barriers to internal rotation. The ab initio calculations demonstrated that there are three stable conformations of DCPK: the cis–cis, the cis–trans and the gauche–gauche. The energy of the gauche–gauche conformer is noticeably higher than the energy of the two other conformers, so this conformer was not found experimentally. To study the conformational dynamics of the DCPK molecule, one- and two-dimensional sections of the potential energy surface corresponding to the rotations of the cyclopropyl groups were calculated. These sections were used to calculate torsion transition energies and vibrational wave functions in anharmonic approach. It was found that there is a strong coupling of large-amplitude torsion motions in the area of the cis–cis and gauche–gauche conformers.  相似文献   

5.
刘文华  栗秀萍 《合成化学》2020,28(5):463-468
环丙基甲基酮是合成环丙氟哌酸类广谱抗菌药物和抗艾滋特效药依法韦仑的重要中间体,在医药、化工及农林等领域均有广泛应用。环丙基甲基酮的合成方法大致分为4类,分别以酮类、酯类、醇类及呋喃有机物为原料,在一定条件下生成环丙基甲基酮粗品,经萃取及精馏得到环丙基甲基酮纯品。本文综述了环丙基甲基酮的合成研究进展。  相似文献   

6.
Protein-folding potentials, designed with the explicit goal that the global energy minimum correspond to crystallographically observed conformations of protein molecules, may offer great promise toward calculating native protein structures. Achieving this promise, however, depends on finding an effective means of dealing with the multiple-minimum problem inherent in such potentials. In this study, a protein-folding-potential test system has been developed that exhibits the properties of general protein-folding potentials yet has a unique well-defined global energy minimum corresponding to the crystallographically determined conformation of the test molecule. A simulated-annealing algorithm is developed that locates the global minimum of this potential in four of eight test runs from random starting conformations. Exploration of the energy-conformation surface of the potential indicates that it contains the numerous local minima typical of protein-folding potentials and that the global minimum is not easily located by conventional minimization procedures. When the annealing algorithm is applied to a previously developed actual folding potential to analyze the conformation of avian pancreatic polypeptide, a new conformer is located that is lower in energy than any conformer located in previous studies using a variety of minimization techniques.  相似文献   

7.
A vinyl cyclopropane rearrangement embedded in an iridium‐catalyzed hydrogen borrowing reaction enabled the formation of substituted stereo‐defined cyclopentanes from Ph* methyl ketone and cyclopropyl alcohols. Mechanistic studies provide evidence for the ring‐expansion reaction being the result of a cascade based on oxidation of the cyclopropyl alcohols, followed by aldol condensation with the pentamethyl phenyl‐substituted ketone to form an enone containing the vinyl cyclopropane. Subsequent single electron transfer (SET) to this system initiates a rearrangement, and the catalytic cycle is completed by reduction of the new enone. This process allows for the efficient formation of diversely substituted cyclopentanes as well as the construction of complex bicyclic carbon skeletons containing up to four contiguous stereocentres, all with high diastereoselectivity.  相似文献   

8.
The task of generating a nonredundant set of low-energy conformations for small molecules is of fundamental importance for many molecular modeling and drug-design methodologies. Several approaches to conformer generation have been published. Exhaustive searches suffer from the exponential growth of the search space with increasing degrees of conformational freedom (number of rotatable bonds). Stochastic algorithms do not suffer as much from the exponential increase of search space and provide a good coverage of the energy minima. Here, the use of a multiobjective genetic algorithm in the generation of conformer ensembles is investigated. Distance geometry is used to generate an initial conformer, which is then subject to geometric modifications encoded by the individuals of the genetic algorithm. The geometric modifications apply to torsion angles about rotatable bonds, stereochemistry of double bonds and tetrahedral chiral centers, and ring conformations. The geometric diversity of the evolving conformer ensemble is preserved by a fitness-sharing mechanism based on the root-mean-square distance of the atomic coordinates. Molecular symmetry is taken into account in the distance calculation. The geometric modifications introduce strain into the structures. The strain is relaxed using an MMFF94-like force field in a postprocessing step that also removes conformational duplicates and structures whose strain energy remains above a predefined window from the minimum energy value found in the set. The implementation, called Balloon, is available free of charge on the Internet ( http://www.abo.fi/~mivainio/balloon/).  相似文献   

9.
Eleven structurally different α, β-unsaturated ketones were subjected to the Clemmensen reduction under anhydrous conditions using amalgamated zinc, hydrogen chloride in a solution of ethyl ether, and acetic anhydride. In all cases but one the formation of cyclopropyl acetates was observed. 4-Methyl-3-penten-2-one, methyl vinyl ketone, 2-isopropylidene-1-cyclopentanone, and 2-cyclohepten-1-one led to substituted cyclopropyl acetates. Stereospecific reactions were found with 2-ethylidene-1-cyclopentanone, 2-benzylidene-1-cyclohexanone, and methyl 1-cyclohexenyl ketone, whereas 3-penten-2-one, 3-methyl-3-buten-2-one, and 2-methyl-2-cyclohexen-1-one afforded mixtures of the isomeric cyclopropyl acetates. These results are interpreted in terms of the intital formation of an allylic anion which undergoes electrocyclic closure. A stereospecific course is followed when geometric constraints permitted. Exceptions are discussed.  相似文献   

10.
Conclusions On the basis of the measurements of dipole moments and Kerr constants it can be said that the oxides of the thiophene chalcone analogues exist in s-cis and s-trans conformations, these differing in the mutual orientation of oxirane ring and carbonyl group.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 7, pp. 1514–1518, July, 1976.The authors wish to thank V. I. Savin for having supplied the thienyl cyclopropyl ketone(IX).  相似文献   

11.
The recently reported Random Incremental Pulse Search (RIPS) technique has been used to probe the conformational energy surface of cyclononane. The stochastic method permits searching of the potential energy surface for all minimum-energy conformations. The search located all previously reported structures together with three additional conformations that were not found by earlier, primitive searching techniques. Two of these structures are high-nergy skew forms, and the third is a low-energy conformer that should contribute significantly to the overall equilibrium set of cyclononane conformations. The global minimum has been found to be the D3 symmetrical twist chair-boat (TBC) form in accordance with previous studies. The newly discovered low-energy structure, which lies only 2.2 kcal/mol above the global minimum, has been designated twist chair-twist chair (TCTC). The two higher energy conformers are skewed chair-chair (SCC) and skewed boat-boat (SBB) forms that are 5.7 kcal/mol and 10.4 kcal/mol above the global minimum, respectively. The seven reported conformations were reanalyzed quantum mechanically (AM 1), and a comparison between MM 2 and AM 1 results is presented.  相似文献   

12.
The reaction of 1-silylcyclopropyl anions with dichloromethyl methyl ether is described. The reaction with an excess amount of dichloromethyl methyl ether gives the corresponding cyclopropyl silyl ketones in low yields. On the other hand, the reaction under basic conditions proceeded smoothly to afford the corresponding cyclopropylidene derivatives, exclusively. The resulting cyclopropylidene compounds are subjected to hydrolysis or trapping with electrophiles easily to give the cyclopropyl silyl ketone derivatives in good yields.  相似文献   

13.
A vinyl cyclopropane rearrangement embedded in an iridium-catalyzed hydrogen borrowing reaction enabled the formation of substituted stereo-defined cyclopentanes from Ph* methyl ketone and cyclopropyl alcohols. Mechanistic studies provide evidence for the ring-expansion reaction being the result of a cascade based on oxidation of the cyclopropyl alcohols, followed by aldol condensation with the pentamethyl phenyl-substituted ketone to form an enone containing the vinyl cyclopropane. Subsequent single electron transfer (SET) to this system initiates a rearrangement, and the catalytic cycle is completed by reduction of the new enone. This process allows for the efficient formation of diversely substituted cyclopentanes as well as the construction of complex bicyclic carbon skeletons containing up to four contiguous stereocentres, all with high diastereoselectivity.  相似文献   

14.
The conformational energies of 1-amino-2-propanol, 2-amino-1-propanol and 1,2-diaminopropane are studied using ab initio molecular orbital theory employing minimal (STO-3G) and extended (4-31G) basis sets. Calculations at both levels of theory generally favor conformations stabilized by internal H-bonding for all molecules considered. Results are first presented for conformations employing assumed geometries. Since the conformational energy differences as found by the initial set of calculations are in some cases rather small it then becomes necessary to introduce geometry optimizations into the study at the minimal STO-3G level. In addition, to get a better estimate of the energy differences of the various conformations 4-31G calculations are performed on the STO-3G optimized structures. These latter results indicate the following, (a) For 1-amino-2-propanol only one conformation that is stabilized by intramolecular H-bonding is low in energy; this has the methyl and amino groups anti. The other H-bonded conformer, where the methyl and amino groups are gauche, is predicted to be ca. 1.2 kcal mol?1 less stable. Similar findings for this molecule have recently been provided by micro-wave spectroscopy. (b) For 2-amino-1-propanol the two H-bonded conformers are only separated by about 0.5 kcal mol?1, with the anti conformer being more stable. Micro-wave spectroscopy again supports these calculations. (c) For 1,2-diaminopropane the gauche conformer is predicted to be of rather high energy (ca. 2.5 kcal mol?1) compared to the corresponding anti H-bonded conformer. The value of 2.5 kcal mol?1should be taken as an upper limit, since the geometry optimization of the gauche conformer of 1,2-diaminopropane is incomplete compared to the optimization carried out for the anti conformer.  相似文献   

15.
The additions of nucleophiles to oxocarbenium ions derived from oxasilacyclopentane acetates proceeded with high diastereoselectivity in most cases. Sterically demanding nucleophiles such as the silyl enol ether of diethyl ketone add to the face opposite the C-2 substituent. These reactions establish the syn stereochemistry about the newly formed carbon-carbon bond. Small nucleophiles such as allyltrimethylsilane do not show this same stereochemical preference: they add from the same face as the substituent in C-2-substituted oxocarbenium ions. The stereoselectivities exhibited by both small and large nucleophiles can be understood by application of the "inside attack" model for five-membered ring oxocarbenium ions developed previously for tetrahydrofuran-derived cations. This stereoelectronic model requires attack of the nucleophile from the face of the cation that provides the products in their lower energy staggered conformations. Small nucleophiles add to the "inside" of the lower energy ground-state conformer of the oxocarbenium ion. In contrast, sterically demanding nucleophiles add to the inside of the envelope conformer where approach is anti to the C-2 substituent of the oxocarbenium ion, regardless of the ground-state conformer population.  相似文献   

16.
The pseudorotation of tetrahydrofuran (THF) (C(4)H(8)O) has been studied using density functional theory, with respect to the valence orbital responses to the ionization potentials and to orbital electron and momentum distributions. Three conformations of THF, the global minimum structure C(s), local minimum structure C(2), and a transition state structure C(1), which are characteristic configurations on the potential energy surface, are examined using the SAOP/et-pVQZ//B3LYP/6-311++G** models with the aforementioned dual space analysis. It is noted in the ionization energy spectra that the minimum structures C(s) and C(2) are not directly connected by pseudorotation, but through the transition state structure C(1). As a result, some orbitals of the C(s) conformer are able to "correlate" to orbitals of the C(2) conformer without a strict symmetry constraint, i.e., orbital 7a' of the C(s) conformer is correlated to orbital 5b of the C(2) conformer. It is also noted that although the valence orbital ionization potentials are not significantly altered by the pseudorotation of THF, their spectra (mainly due to excitation) are quite different indeed. Detailed orbital analysis based on dual space analysis is given. The valence orbital behavior of the conformations is orbital dependent. It can be approximately divided into three groups: the "signature group" is associated with orbitals experiencing significant changes. The frontier orbitals are in this group. The "nearly identical group" includes orbitals without apparent changes across the conformations. Most of the orbitals showing a certain degree of distortion during the pseudorotation process belong to the third group. The present study demonstrates that a comprehensive understanding of the pseudorotation of THF and its dynamics requires multidimensional information and that the information gained from momentum space is complementary to that from the more familiar coordinate space.  相似文献   

17.
The UV-Vis and fluorescence spectra of free base and diprotonated meso-tetrathien-2'-ylporphyrins are, when compared to the spectra of meso-tetra-phenyl- or even -thien-3'-ylporphyrins, characterized by surprisingly large red-shifts. A comparison of the optical spectra and the computed rotational barriers for these meso-aryl-substituted porphyrins and a detailed conformational analysis of the single crystal X-ray structure of a diprotonated meso-tetrathien-2'-ylporphyrin suggest that the origin of the altered electronic properties of meso-tetrathien-2'-ylporphyrins are mainly due to the contribution of conformations in which the thienyl groups adopt idealized co-planar arrangements with the porphyrin ring. These conformations allow an efficient extension of the porphyrinic pi-system through conjugation. We synthesized a meso-tetrathien-2'-ylporphyrin with methyl groups in the o-position, thus preventing the formation of conformers with co-planar thienyl groups and a corresponding thien-2'-ylporphyrin with methyl substituents in a distal position that possesses the same steric requirements for thienyl group rotation as the parent compound, to conclusively deduce the influence of the conformers on the electronic structure. A MNDO-PSDCI computation of their optical spectra further supports our key hypothesis. DFT computations of the total energies of the hypothetical diprotonated thien-2'-ylporphyrin conformer with perpendicular thienyl groups and the conformer containing near-co-planar thienyl groups quantify the resonance stabilization energy. Our results support and complement recent photophysical and theoretical studies by Gupta and Ravikanth and Friedlein et al. on thien-2'-yl-substituted core-modified porphyrins and [meso-tetra(5'-bromothien-2'-yl)porphyrinato]Zn(ii), respectively.  相似文献   

18.
Many discotic mesogens are molecules with a central aromatic ring with adjacent alkylcarboxylate substituents. The simplest such molecule, 1,2-dihydroxydiacetylbenzene, which is not mesogenic, is studied by NMR spectroscopy as a solute in a nematic solvent. The spectra are analysed to give sets of residual dipolar couplings, Dij , which are then used to test models for the conformation adopted by the acetate side groups. The conformations and geometry of an isolated molecule are calculated by the ab initio MP2/6-311G method and also by the DFT approach using the B3LYP functional with the 6-311++G** basis set. The quantum chemical calculations find that the minimum energy conformer has the acetate groups rotated in opposite directions out of the ring plane, and this kind of structure is also consistent with the NMR data.  相似文献   

19.
The reaction of silylcyclopropyl bromides with dichloromethyl methyl ether in the presence of n-butyllithium is investigated. Under basic reaction conditions, the corresponding cyclopropylidene derivatives are exclusively obtained. The resulting cyclopropylidene compounds are subjected to protonolysis or trapping with electrophiles in a one-pot to give the cyclopropyl silyl ketone derivatives in good yields. Acidic treatment of derived cyclopropyl silyl ketone allows isomerization to give the thermodynamically favorable trans form exclusively.  相似文献   

20.
The confromations of the unsaturated seven membered ring in 4,4,6,6-tetradeuterium-1,2-benzocycloheptene-(1) ( 1 ) and five benzocycloheptene derivatives were determined by NMR spectroscopy. For all investigated compounds at ?80°C only one conformer was present in detectable quantity. By analysis of the NMR data – molecular symmetry, coupling constants and chemical shift – it can be shown that the conformation is always the chair form. The free conformational enthalpy of both the other conformations with boat or twist form of the ring is for all six compounds more than 1.8 kcal/mole. The experimental results agree with those from model calculations: thus for benzocycloheptene, the 5,5-dimethyl derivative ( 2 ) and the 4,4,6,6-tetramethyl derivative ( 4 ) the lowest energy was found for the chair conformation; the second most stable conformations were found to be the boat for 1 and 4 , and the twist form for 2 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号