首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 250 毫秒
1.
采用一种新的调变多元醇制备方法,通过调节碳载体热处理条件,制备得到不同的Pt/C燃料电池催化剂。采用pH计及物理吸附仪表征碳黑表面的含氧官能团和比表面积,利用电感耦合等离子光谱、X射线衍射、透射电镜和循环伏安法分别表征催化剂的成分、物相组成、微观组织形貌和电化学性能,并与进口的Johnson Matthey(JM) Pt/C催化剂的性能进行对比。结果表明:采用调变多元醇法,以400 ℃热处理碳黑作载体所制备的Pt/C催化剂的电化学比表面积达到83 m2·g-1,质量电流密度为49.03 A·g-1。而进口催化剂JM 20% Pt/C的电化学比表面积为77 m2·g-1,质量电流密度仅11.13 A·g-1,自制催化剂即使Pt载量降低3wt%~4wt%,其电催化活性仍优于进口催化剂。  相似文献   

2.
为探索一种高性能的锂离子电池负极材料,采用酸刻蚀法制备了高导电性、高稳定性的二维层状Ti3C2Tx,通过溶剂热法制备了具有高理论比容量的花瓣状VS2纳米片,再经过简单的液相混合得到了二维层状Ti3C2Tx-MXene@VS2复合物。通过扫描电子显微镜、透射电子显微镜、X射线光电子能谱、X射线衍射和能谱分析对复合材料的形貌和结构进行了表征,采用循环伏安、恒流充放电、长循环和交流阻抗谱对复合材料的电化学性能进行了研究。结果表明:VS2纳米片均匀地分布在Ti3C2Tx的层间及表面,该复合物具有高的可逆容量(电流密度为0.1A·g-1时,比容量为610.5mAh·g-1)、良好的倍率性能(电流密度为2A·g-1时,比容量为197.1mAh·g-1)和良好的循环稳定性(电流密度为0.2 A·g-1时,循环600圈后比容量为874.9 mAh·g-1;电流密度为2 A·g-1时,循环1 500圈后比容量为115.9mAh·g-1)。  相似文献   

3.
王瑛  林宁 《无机化学学报》2016,32(12):2191-2197
通过液相共沉淀法获得Zn和Co的前驱,经过600℃煅烧处理获得ZnCo2O4纳米颗粒组装的毛线团状的微球。电化学测试表明,在0.5 A·g-1的电流密度下循环200次可逆比容量保持为965 mAh·g-1;在0.8 A·g-1的电流密度下循环350次可逆比容量保持为882 mAh·g-1。倍率性能测试表明在2 A·g-1的电流密度时可逆比容量为736 mAh·g-1。  相似文献   

4.
采用碳布(CC)为柔性基底,通过水热法制备了MnO2/CC及N掺杂MnO2/CC无黏结剂负极材料,借助X射线衍射(XRD)、扫描电镜(SEM)、X射线光电子能谱(XPS)、比表面积测试和恒电流充放电对材料进行了结构表征及电化学性能测试。结果表明N掺杂MnO2/CC具有良好的倍率性能和循环稳定性。在0.1 A·g-1的电流密度下,其首次充电比容量为948.8 mAh·g-1,经过不同倍率测试后电流密度恢复至0.1 A·g-1时仍然保持有907.9 mAh·g-1的可逆比容量,容量保持率为95.7%。在1 A·g-1的大电流密度下,其首次充电比容量为640.3 mAh·g-1,循环100次后仍然保持有529.9 mAh·g-1的可逆比容量,容量保持率为82.8%,可逆比容量远高于商用MnO2。  相似文献   

5.
通过液相共沉淀法获得Zn和Co的前驱,经过600℃煅烧处理获得ZnCo2O4纳米颗粒组装的毛线团状的微球。电化学测试表明,在0.5 A·g-1的电流密度下循环200次可逆比容量保持为965 mAh·g-1;在0.8 A·g-1的电流密度下循环350次可逆比容量保持为882 mAh·g-1。倍率性能测试表明在2 A·g-1的电流密度时可逆比容量为736 mAh·g-1。  相似文献   

6.
采用原位溶剂热生长法设计合成了锌掺杂Co9S8纳米颗粒。各种表征技术和性能测试结果表明:锌掺杂Co9S8纳米颗粒的孔尺寸为18 nm,比表面积为23 m2·g-1;同时微量的锌掺杂显著增强了Co9S8的电催化析氢(HER)活性及电容器性能。在HER性能测试中,当电流密度为10 mA·cm-2时电位为-361 mV,电流密度最高可达38.26 mA·cm-2,且具有优异的循环稳定性。同时在电容器性能测试中具有较高的比电容,当电流密度为1 A·g-1时,质量比电容和面积比电容分别为235.48 F·g-1和812.4 mF·cm-2。  相似文献   

7.
通过静电纺丝法制备Mn4+掺杂的Co3O4复合纳米纤维,利用XRD、XPS、BET、SEM和电化学工作站等对材料的结构、成分、形貌和电化学性能进行表征与测试。研究发现,通过Mn4+掺杂,Co3O4复合纳米纤维的电化学性能得到明显改善。当nConMn=20∶2时,相应的复合纤维具有较大比表面积68 m2·g-1,而且该样品呈现出清晰的氧化还原峰,在1 A·g-1的电流密度下,放电比电容量为585 F·g-1,这比纯Co3O4纳米纤维的416 F·g-1,有显著提高;循环500圈电容保持率达到82.6%,而纯Co3O4纳米纤维则是76.4%。  相似文献   

8.
采用溶剂热法成功制备了纳米CuFe2O4-rGO复合材料。通过X射线衍射(XRD),扫描电子显微镜(SEM)、透射电子显微镜(TEM)和电化学工作站对样品的结构、形貌及电容特性进行表征。结果表明,CuFe2O4纳米粒子均匀地分散在石墨烯片层间,其中CuFe2O4-20% rGO复合材料具有最优的电化学性能,当电流密度1 A·g-1时,其比电容为1 952.5 F·g-1,当电流密度为1 A·g-1时,CuFe2O4-20% rGO复合材料经1 000次充放电后的比电容保持率为86.17%。  相似文献   

9.
以1,4-苯二甲酸为配体,FeCl3为金属盐,采用溶剂热法合成了苯二甲酸-铁配位聚合物晶体。以其为前驱体,通过固相热解制备了尺寸均一的α-Fe2O3纳米粒子。利用XRD、FT-IR、SEM及TEM等手段对配位聚合物及其热解产物进行了表征。将α-Fe2O3纳米粒子用作锂离子电池负极材料,电化学测试结果表明:在0.1A·g-1电流密度下充放电50次后,材料的可逆比容量仍保持在530mAh·g-1,表现出较高的比容量和优异的循环稳定性。  相似文献   

10.
采用快速凝固与脱合金相结合的方法制备纳米多孔Ni-Mo合金,然后退火获得三维双连续纳米多孔NiMoO4,采用XRD、SEM、TEM对多孔NiMoO4的成分、形貌和结构进行表征,并通过循环伏安、恒电流充放电等方法测试多孔NiMoO4电极的电化学性能。结果表明,Ni5Mo5Al90和Ni2.5Mo2.5Al95经脱合金和退火均可获得纳米多孔NiMoO4,Mo元素对脱合金具有钉扎作用,可减小多孔合金的骨架和孔隙尺寸,由Ni5Mo5Al90合金获得纳米多孔NiMoO4表现出更为优异的超电容性能,其在1 A·g-1电流密度比容量达708 F·g-1,当电流密度增加20 A·g-1,其比容保持率达57.1%。在4 A·g-1电流密度下循环充放电1 000次,其比容保持率达91.2%。  相似文献   

11.
采用水热合成法,合成了比表面积为175 m~2·g~(-1),孔径在2~4nm范围内的扫帚状CeO_2。通过微波辅助乙二醇还原氯铂酸法制备了Pt-CeO_2/RGO催化剂,探究扫帚状CeO_2的添加对Pt基催化剂电催化性能的影响。利用X射线衍射仪(XRD)、扫描电镜(SEM)、N_2吸附-脱附、X射线光电子能谱(XPS)对所制备的CeO_2及催化剂进行表征。利用电化学工作站对催化剂进行电化学性能测试。结果表明,催化剂中CeO_2保持原有扫帚状,Pt纳米粒子均匀分布于石墨烯载体表面;当m_(RGO)∶m_(CeO2)=1∶2时,添加了扫帚状CeO_2的Pt-CeO_2/RGO催化剂的电催化性能最优,电化学活性表面积为102.83 m~2·g~(-1),对乙醇氧化的峰值电流密度为757.17A·g~(-1),1 000 s的稳态电流密度为108.17 A·g~(-1),对乙醇催化氧化反应的电荷转移电阻最小,活化能最低。  相似文献   

12.
采用不同方法制备了铈锆复合氧化物催化剂用于催化HCl氧化反应。自发沉积策略制备的CeO_2@ZrO_2催化剂中,超细CeO_2纳米粒子均匀的镶嵌于非晶态ZrO_2中。CeO_2粒子显著的"尺寸效应"使得该催化剂具有更高的Ce~(3+)和氧空位浓度,而较高的Ce~(3+)和氧空位浓度使得催化剂具有优异的低温氧化还原性能和储释氧能力。催化性能测试表明,CeO_2@ZrO_2催化剂展现出最好的催化活性(1.90 gCl2·gcat~(-1)·h~(-1)),同时CeO_2粒子周围非晶态的ZrO_2阻碍CeO_2的高温烧结,提高了该催化剂的稳定性。  相似文献   

13.
采用不同方法制备了铈锆复合氧化物催化剂用于催化HCl氧化反应。自发沉积策略制备的CeO2@ZrO2催化剂中,超细CeO2纳米粒子均匀的镶嵌于非晶态ZrO2中。CeO2粒子显著的“尺寸效应”使得该催化剂具有更高的Ce3+和氧空位浓度,而较高的Ce3+和氧空位浓度使得催化剂具有优异的低温氧化还原性能和储释氧能力。催化性能测试表明,CeO2@ZrO2催化剂展现出最好的催化活性(1.90 gCl2·gcat-1·h-1),同时CeO2粒子周围非晶态的ZrO2阻碍CeO2的高温烧结,提高了该催化剂的稳定性。  相似文献   

14.
通过两步法制备了一种空心六边形镍钴硫化物(HHNCS)与还原氧化石墨烯(RGO)的纳米复合材料HHNCS/RGO。利用XRD,SEM,TEM和Raman光谱等对复合物进行表征,发现镍钴硫化物为空心六边形结构,并且均匀地附着在RGO的表面。该纳米复合物用作超级电容器电极表现出优异的电化学性能。在电流密度为1 A·g-1时比电容为927 F·g-1;当电流密度增大到20 A·g-1时,比电容仍高达724 F·g-1,表明材料拥有较好的倍率性能。此外,在电流密度5 A·g-1下循环2 000次后比电容保留有初始值的93%,显示出优异的循环稳定性。HHNCS/RGO优异的电容性能主要是由于RGO的存在不仅增强了材料的导电性,而且作为理想的载体分散HHNCS纳米片。HHNCS/RGO纳米复合物优异的电化学性能使其在超级电容器电极材料领域具有应用前景。  相似文献   

15.
通过两步法制备了一种空心六边形镍钴硫化物(HHNCS)与还原氧化石墨烯(RGO)的纳米复合材料HHNCS/RGO。利用XRD,SEM,TEM和Raman光谱等对复合物进行表征,发现镍钴硫化物为空心六边形结构,并且均匀地附着在RGO的表面。该纳米复合物用作超级电容器电极表现出优异的电化学性能。在电流密度为1 A·g-1时比电容为927 F·g-1;当电流密度增大到20 A·g-1时,比电容仍高达724 F·g-1,表明材料拥有较好的倍率性能。此外,在电流密度5 A·g-1下循环2000次后比电容保留有初始值的93%,显示出优异的循环稳定性。HHNCS/RGO优异的电容性能主要是由于RGO的存在不仅增强了材料的导电性,而且作为理想的载体分散HHNCS纳米片。HHNCS/RGO纳米复合物优异的电化学性能使其在超级电容器电极材料领域具有应用前景。  相似文献   

16.
通过静电纺丝法制备Mn~(4+)掺杂的Co_3O_4复合纳米纤维,利用XRD、XPS、BET、SEM和电化学工作站等对材料的结构、成分、形貌和电化学性能进行表征与测试。研究发现,通过Mn~(4+)掺杂,Co_3O_4复合纳米纤维的电化学性能得到明显改善。当nCo∶nMn=20∶2时,相应的复合纤维具有较大比表面积68 m2·g-1,而且该样品呈现出清晰的氧化还原峰,在1 A·g-1的电流密度下,放电比电容量为585 F·g-1,这比纯Co_3O_4纳米纤维的416 F·g-1,有显著提高;循环500圈电容保持率达到82.6%,而纯Co_3O_4纳米纤维则是76.4%。  相似文献   

17.
采用静电纺丝技术由不同浓度纺丝液制备了SnO_2-PVP纤维,并分别在氩气和空气中煅烧后获得SnO_2纤维和SnO_2-C纤维。物化性能表征表明所合成的SnO_2纤维及SnO_2-C纤维具有特殊的网格结构,存在较多空隙能有效缓冲SnO_2充放电过程中剧烈的体积变化,因而样品具有比SnO_2纳米颗粒更好的储锂性能。SnO_2-C纤维中含有较多的C具有较好的倍率性能,但放电容量较低。SnO_2纤维具有较高的放电容量,同时具有较好的循环稳定性。在电流密度为0.4、0.8、1.6、2.4和4 A·g-1,10次循环后放电容量分别达到1 372、832、685、642和599 mAh·g~(-1),且当电流密度回落至0.4 A·g-1时放电容量可恢复到1 113 mAh·g-1;另外在电流密度1.6 A·g-1下充放电200次后纤维的放电容量仍可达到613 mAh·g~(-1)、库伦效率接近100%,表现出极好的倍率性能和循环稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号