首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A synergistically catalytic luminescent nanozyme was designed and synthesized for the degradation and enzymatic fluorescence detection of diethylstilbestrol, an endocrine-disrupting environmental pollutant. Because of the integration of cocatalytic Cu2+ ion and CeO2 particle, luminescent Tb3+ ion, and functional ligand dipicolinic acid through flexible metal-organic framework structure, this nanozyme has not only the dual functions of luminescence and multienzyme such as laccase and horseradish peroxidase but also synergistically catalytic effect via a regeneration of Cu2+ oxidized by CeO2. The synergistically catalytic effect of nanozyme greatly enhances the degradation of diethylstilbestrol. The resultants sensitized the luminescence of Tb3+ ions, which was used to sense the pM level of diethylstilbestrol in environmental samples. Such a high-performance catalytic luminescent nanozyme can be used to replace natural enzymes for the enzyme-based degradations and ultrasensitive assays. The strategy of constructing artificial enzymes directly from functional units provides a new way for developing fit-for-purpose multifunctional artificial enzymes.  相似文献   

2.
Based on a few noteworthy features, cerium oxide nanoparticles have gained significance in nanotechnology. The effective microwave combustion method (MCM) and the conventional sol–gel (CRSGM) technologies are used in this study to successfully generate the crystalline CeO2 nanoparticles (NPs). Additionally, using a variety of spectroscopic and analytical methods, the synthesized CeO2 NPs are examined to assess to understand their structure and morphology. The XRD patterns of CeO2 NPs show that the structure exhibits a face-centered cubic lattice. Then, with demonstrated good conversion and selectivity, the impact of the epoxidation reaction of cyclohexene was examined. Finally, it can be said that using CeO2 nanoparticles is an efficient strategy to increase the catalytic activity toward the epoxidation reaction of cyclohexene. In the presence of acetonitrile as a solvent and H2O2 as an oxidant, the catalyst samples utilized in the cyclohexene epoxidation reaction were examined. In this study, the CeO2 catalyst outperformed all other catalysts in terms of cyclohexene maximal conversion and selectivity. After six prolonged cycles, the conversion of cyclohexene oxidation using CeO2 NPs shows reasonable recyclability and conversion efficiency, making it the best catalyst for an industrial production application.Additionally, the upgraded CeO2 nanoparticle electrode for nitrite detection has a linear concentration range (0.02–1200 M), a low detection limit (0.22 M), and a higher sensitivity (1.735 A M−1 cm−2). CeO2 NPs, on the other hand, have a quick response time, excellent sensitivity, and high selectivity. Additionally, the manufactured electrode is used to find nitrite in various water samples. Finally, it can be said that using CeO2 NPs is an efficient strategy to increase the catalytic activity toward cyclohexene oxidation and nitrite.  相似文献   

3.
A three-dimensional (3D) structured electrode in which a compact CeO2-β-PbO2 particle layer on each carbon fiber in the felt (denoted as CF/CeO2-β-PbO2) was fabricated using cyclic voltammetry (CV) method in the presence of CeO2 nanoparticles in the electrolyte and supposed to be used as a sensor for in situ chemical oxygen demand (COD) detection. It was found that CeO2 was codeposited with PbO2 onto the anode, and the deposited crystals were tiny and compacted with each other. The electrochemical behaviors demonstrate that the fabricated CF/CeO2-β-PbO2 electrode possesses larger effective surface area, higher electrochemically catalytic activity, and better mechanical stability as compared with the anode without CeO2 deposited by CV method or constant potential (CP) method. The results of COD determination by the fabricated CF/CeO2-β-PbO2 electrode show a sensitivity of (3.0 ± 0.02) × 10?3 mA cm?2/mg L?1, a detection limit of 3.6 mg L?1 (S/N = 3) and a linear range of 30–8500 mg L?1 with correlation coefficient (R) of 0.9985 and RSD within 5 %.
Graphical abstract A 3D CF/CeO2-β-PbO2 electrode with CeO2-β-PbO2 particle layer on each carbon fiber in the felt was supposed to be used as a sensor for in situ chemical oxygen demand (COD) detection. It was fabricated by cyclic voltammetry (CV) method in the presence of CeO2 nanoparticles in the electrolyte containing Pb2+. It was found that CeO2 was codeposited with PbO2 onto the anode and the deposited particles became tinier and more compact. The addition of CeO2 enhances the electrochemical catalytic activity. Tinier and more compact crystals enlarge the effective electrode area and improve the mechanical strength, which makes the CF/CeO2-β-PbO2 electrode possess higher detection sensitivity, wider linearity range, and longer service life in COD detection as compared with the anodes without CeO2 fabricated by CV method or constant potential (CP) method.
  相似文献   

4.
A good route for the fabrication of CeO2 nanoparticles (nano‐CeO2)/multi‐walled carbon nanotubes (MWCNTs) modified glassy carbon electrodes (GCE) was proposed. MWCNTs are used to immobilize nano‐CeO2. What′s more, with the addition of the MWCNTs, the agglomeration level of CeO2 nanoparticles can be reduced, the extremely large surface area can be obtained and the electron transfer rate can be increased. The morphological characterization of nano‐CeO2/MWCNTs was examined by scanning electron microscopy (SEM). The performances of the nano‐CeO2/MWCNTs/GCE were characterized with cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and typical amperometric response (it). The potential utility of the constructed electrodes was demonstrated by applying them to the analytical determination of puerarin concentration. The catalytic oxidation of puerarin has a better result on nano‐CeO2/MWCNTs/GCE because of the synergistic effect of nano‐CeO2 and MWCNTs. An optimized limit of detection of 8.0×10?9 mol/L was obtained at a signal‐to‐noise ratio of 3 and with a fast response time (within 3 s). Additionally, the nano‐CeO2/MWCNTs/GCE exhibited a wide linear range from 0.04 to 6.0 μmol/L and high sensitivity.  相似文献   

5.
Pt supported over CeO2 (Pt on CeO2) and Pt doped CeO2 (Pt in CeO2) are synthesized using chemical reduction and solution combustion method. In chemical reduction two different reducing agents are used namely; hydrazine hydrate and formaldehyde giving Pt supported over CeO2. Solution combustion method is used to prepare Pt doped CeO2. Detailed characterization using X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) surface area measurement and transmission electron microscopy (TEM) is carried out to distinguish the Pt supported and doped compounds. XRD and TEM results have clearly shown the differences in the structure and morphology, however, BET results do not show significant differences. Further, electrochemical measurements are performed in neutral medium to differentiate the electrochemical activity. Cyclic voltammetry (CV) indeed shows noticeable differences between Pt supported over CeO2 and Pt doped CeO2. CeO2 alone has also shown different electrochemical behavior compared to the Pt containing CeO2. Considering oxygen evolution reaction (OER) as a model reaction, Tafel slope measurements are performed for CeO2, Pt supported over CeO2 and Pt doped CeO2 to observe the differences. It was noted that CeO2 and Pt doped CeO2 showed similar Tafel slope indicating the same mechanism, while Pt supported over CeO2 showed different Tafel slopes, hence the different mechanism.  相似文献   

6.
《Electroanalysis》2018,30(5):928-936
Ceria cubes decorated with manganese oxide nanoparticles (Mn2O3/CeO2 nanocubes) were synthesized and used to modify a Au electrode for analysis of As(III) in aqueous solution. This modified electrode displayed improved sensitivity than either oxide on their own, indicating a synergistic effect due to the effect of Mn2O3 on the properties of CeO2. The improved sensitivity could be ascribed to the enhanced As (III) adsorption ability of Mn2O3/CeO2 nanocube during electrochemical pre‐concentration, combined with the well known As(III) sensing qualities of the gold substrate. The Mn2O3/CeO2 nanocube modified gold electrode behaved as a promising sensor with stable, repeatable square wave anodic stripping voltammetry (SWASV) peaks, separated from common interfering ions in natural water including Cu (II) under practical conditions. Repeatability and stability studies revealed the As (III) sensor to be robust and reliable, with a sensitivity of 0.0414 μA/ppb and a limit of detection (LoD) of 3.35 ppb under optimized conditions, indicating a possible general use of this class of heteronanostructures in electroanalytical chemistry for studies that rely upon adsorption of deposition of the analyte prior to stripping analysis.  相似文献   

7.
Point-of-care testing (POCT) devices have evolved to provide beneficial information about an individual's health whenever needed. Enzyme-based analytical devices have facilitated the highly selective detection of numerous biological molecules and ions. Enzymes are commonly used as the tags of recognition components, such as antibodies, to generate and amplify detection signals. Particularly, alkaline phosphatase (ALP) is one of the most widely used enzymes because of its high turnover number and low cost. Rapid response time and the incorporation of many sensors fabricated by micro/nano processing technologies are the advantages in using electrochemical devices as analytical tools. Therefore, ALP-based electrochemical devices have potential applications for more practical POCT platforms. This review summarizes recent research progress of ALP-based electrochemical devices for POCT. In addition to ALP substrates, the application of ALP-based immunosensors, aptasensors, and DNAzyme sensors are discussed.  相似文献   

8.
A simple strategy has been proposed to quantify Zn2+ ions using CeO2 nanoparticle-modified glassy carbon electrode. The CeO2 nanoparticles were prepared by sucrose-nitrate decomposition method, and it was characterized by X-ray diffraction (XRD), FT-IR, TEM, and surface area analyzer. The synthesized CeO2 nanoparticles were used as modifier molecules as a thin film on glassy carbon electrode (GCE) in the trace level quantification of Zn2+ by using cyclic voltammetry (CV) and differential pulse anodic stripping voltammetry (DPASV) techniques. The fabricated sensor exhibited a good analytical response towards Zn2+ ions. The modified electrode showed a wide linearity in the concentration range 20–380 μg L?1 with a limit of detection 0.36 μg L?1. The proposed electrochemical sensor was successfully applied to trace level Zn2+ quantification from real sample matrices.  相似文献   

9.
The composites containing polycarbonate (PC) and cerium oxide (CeO2) nanoparticles as well as nanoparticles modified with stearic acid (mCeO2) have been prepared using a melt blending method. The composites are studied by using FTIR spectroscopy, differential scanning calorimetry, thermal gravimetric analysis and scanning electron microscopy, and their tensile strength and ultraviolet (UV) resistance are examined. The results indicate that the introduction of CeO2 nanoparticles at 1 wt% can improve the mechanical properties of PC, while a weight ratio that is over 1 wt% can lead to a reduction in the tensile strength. Compared with the PC/CeO2 composites, the PC/mCeO2 composites provide better mechanical properties. Besides, the introduction of CeO2 nanoparticles gives PC promising UV resistance. However, different amounts of CeO2 nanoparticles used provide similar thermal and UV resistance in PC. In a comparison of the PC/CeO2 and PC/mCeO2 composites, there are no apparent differences observed between CeO2 and mCeO2 on improving the UV resistance of PC.  相似文献   

10.
The detection of the lactate level in blood plays a key role in diagnosis of some pathological conditions including cardiogenic or endotoxic shocks, respiratory failure, liver disease, systemic disorders, renal failure, and tissue hypoxia. Here, we described for the first time the use of a novel mixed metal oxide solution system to address the oxygen dependence challenge of first generation amperometric lactate biosensors. The biosensors were constructed using ceria-copper oxide (CeO2–CuO) mixed metal oxide nanoparticles for lactate oxidase immobilization and as electrode material. The oxygen storage capacity (OSC, 492 μmol-O2/g) of these metal oxides has the potential to reduce the oxygen dependency, and thus eliminate false results originated from the fluctuations in the oxygen concentration. In an effort to compare the performance of our novel sensor design, ceria nanoparticle decorated lactate sensors were also constructed. The enzymatic activity of the sensors were tested in oxygen-rich and oxygen-lean solutions. Our results showed that the OSC of the electrode material has a big influence on the activity of the biosensors in oxygen-lean environments. While the CeO2 containing biosensor showed an almost 21% decrease in the sensitivity in a O2-depleted solution, the CeO2–CuO containing electrode, with a higher OSC value, experienced no drop in sensitivity when moving from oxygen-rich to oxygen-lean conditions. The CeO2–CuO decorated sensor showed a high sensitivity (89.3 ± 4 μA mM−1 cm−2), a wide linear range up to 0.6 mM, and a low limit of detection of 3.3 μM. The analytical response of the CeO2–CuO decorated sensors was studied by detecting lactate in human serum with good selectivity and reliability. The results revealed that CeO2–CuO containing sensors are promising candidates for continuous lactate detection.  相似文献   

11.
《Electroanalysis》2017,29(4):1197-1204
Amperometric sensor for eugenol based on glassy carbon electrode (GCE) modified with CeO2 nanoparticles dispersed in surfactant was fabricated. The effect of surfactant nature (sodium dodecylsulfate, cetylpyridinium bromide (CPB) and Brij® 35) on eugenol voltammetric behaviour was tested. In comparison to CeO2‐H2O/GCE, CeO2‐CPB/GCE showed 2.8‐fold increased current and 70 mV cathodic shift of potential in the diffusion‐controlled irreversible electrooxidation. The electrodes were characterized with SEM and EIS. CeO2‐CPB/GCE showed significantly lower charge transfer resistance (2.6±0.3 kΩ vs. 20±1 kΩ for CeO2‐H2O/GCE and 173±9 kΩ for GCE). Under conditions of DPV, the sensor linear dynamic range is 0.075‐75.0 μM of eugenol with the limits of detection (LOD) and quantification (LOQ) of 19.1 and 63.8 nM, respectively. The sensor exhibited high sensitivity, selectivity, good reproducibility and fast response and was applied for the real samples analysis (essential oils and clove spices). The results obtained correspond well to the data of spectrophotometric method.  相似文献   

12.
The adsorption and dissociation of water on CeO2(111), CeO2(221), CeO2(331), and CeO2(110) has been studied by means of periodic density functional theory using slab models. The presence of step sites moderately affects the adsorption energy of the water molecule but in some cases as in CeO2(331) is able to change the sign of the energy reaction from endo- to exothermic which has important consequences for the catalytic activity of this surface. Finally, no stable molecular state has been found for water on CeO2(110) where the reaction products lead to a very stable hydroxylated surface which will rapidly become inactive.  相似文献   

13.
尉艳  李茂国方宾 《中国化学》2007,25(11):1622-1626
The preparation of a glassy carbon electrode modified by CeO2 nanoparticles was described, which was characterized by cyclic voltammetry and electrochemical impedance spectroscopy. In pH 6.0 buffer, the CeO2 nanoparticle modified electrode (CeO2 NP/GC) gave an excellent electrocatalytic activity for the oxidation of uric acid (UA). The catalytic current of UA versus its concentration had a good linear relation in the range of 2.0 × 10^-7-5.0 × 10^- 4 mol/L, with the correlation coefficient of 0.9986 and detection limit of 1.0 ×10^-7 mol/L. The modified electrode can be used for the determination of UA in urine, which can tolerate the interference of ascorbic acid up to 1000-fold. The method was simple, quick and sensitive.  相似文献   

14.
The present study evaluates a new method to prepare Cerium oxide (CeO2) nanoparticles by formamide/tri(ethyleneglycol)monododecyl ether (C12E3)/n-octane oil-continuous nonaqueous microemulsion. The effect of the polar phase (formamide/water) on the phase behavior, drop size, and conductivity behavior of the reverse microemulsion were investigated. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to characterize the phase and morphology of synthesized CeO2 nanoparticles. It was found that the CeO2 powders synthesized within nonaqueous microemulsions and aqueous microemulisons had an average particle size of 30–50 nm and 15–40 nm, respectively. The experimental results indicate the formation mechanism of CeO2 nanoparticles in formamide nonaqueous microemulsion and aqueous microemulsion is similar, and the formamide nonaqueous microemulsion can be used as nanoreactors for preparation of nanoparticles.  相似文献   

15.
唐紫蓉  尹霞  张燕辉  张楠  徐艺军 《催化学报》2013,34(6):1123-1127
用一维CeO2纳米管替代非一维结构的商用CeO2, 用于负载Pd而制得的催化剂在空气气氛下高温煅烧过程中Pd纳米粒子的团聚受到明显抑制, 在选择性有氧氧化苯甲醇生成苯甲醛反应中, 所制CeO2纳米管负载的Pd催化剂表现出更高的催化活性. 可见, 一维金属氧化物材料有望用作载体以抑制贵金属纳米粒子的团聚, 从而提高其催化性能.  相似文献   

16.
研究了低于300 ℃时两种氧化铈对稀燃阶段NOx存储性能的影响,催化剂由2%(w)Pt/Al2O3(PA)与CeO2-X(X=S,I)机械混合制备. X射线衍射(XRD),BET表面积和扫描电子显微镜(SEM)用于表征材料的物理结构. X射线光电子能谱(XPS)和H2程序升温还原(H2-TPR)用于表面Ce3+和活性氧定量. 原位漫反射傅里叶变换红外光谱(in-situ DRIFTS)用于分析表面NOx吸附物种. 相比于CeO2-I,CeO2-S 具有优良的物理化学性能,包括高比表面积、丰富的空隙结构、较高的抗老化能力及表面Ce3+浓度. 因而,Pt/Al2O3+CeO2-S 表现出优异的NOx存储能力. 此外,PA+CeO2-X(X=S,I)上存在Pt 与CeO2之间的相互作用,可提高表面氧物种的活性进而促进NO氧化及NOx存储. PA+CeO2-S上的这种相互作用要强于PA+CeO2-I. 研究表明,表面Ce3+浓度和活性氧含量对NOx存储起到重要作用. 然而经过水热处理后,Pt 与老化的氧化铈(ACS,ACI)之间的相互作用降低,并且两种氧化铈NOx存储性能显著下降. 另外,与PA+ACS(ACI)相比,PA+PACS(PACI)样品NOx存储能力得到改善,这归因于表面氧物种活性增加能促进硝酸盐的形成.  相似文献   

17.
Human serum is one of the effective samples for point-of-care testing (POCT). Sensitive and quick determination of thrombin content in human serum samples is important. An electrochemical aptasensor based on Prussian blue and Au nanoparticles loaded MoS2 nanoflowers (PB−Au@MoS2) hybrid was constructed. By using PB−Au@MoS2 as both a substrate and a signal reporter, this aptasensor could demonstrate excellent performance for thrombin detection with a detection linear range from 0.01 pM to 30 nM and detection limit down to 1 fM. This work may provide a strategy to establish effective and sensitive sensing devices for thrombin in clinical diagnosis.  相似文献   

18.
《Analytical letters》2012,45(17):3100-3112
Abstract

A novel hemoglobin (Hb) biosensor based on the remarkable synergistic effects of cerium dioxide (CeO2) and multiwalled carbon nanotubes (MWNTs) for detection of hydrogen peroxide (H2O2) is presented. The Hb/CeO2/MWNTs/CHIT nanocomposite was nanoengineered by selected matched material components and optimized composition ratio to produce a superior H2O2 sensor. The preparation method is quite simple and practical. This composite matrix combined the advantages of MWNTs, CeO2 nanoparticles, and chitosan (CHIT), with good electron-transfer ability, attractive biocompatibility, and fine film-forming ability, which could increase Hb attachment quantity and H2O2 detection sensitivity. In the optimum pH 7.0 phosphate buffer, the electrocatalytic response exhibited a linear dependence on H2O2 concentration in a wide range from 5.0 × 10?6 to 4.6 × 10?4 mol L?1 with a detection limit of 6.5 × 10?7 mol/L (3σ).  相似文献   

19.
Density functional calculations were performed on electronic and optical properties of C (or N)-doped cubic cerium dioxide (CeO2). When O is replaced by C (or N) in CeO2, obvious band-gap (Eg) reduction is observed. Meanwhile, it is interesting to find that the substitutional doping of C (or N) in CeO2 obviously increases the O 2p–Ce 4f transition intensity and also the refractive index. The increase in the O 2p–Ce 4f transition intensity on going from undoped, N-doped and C-doped CeO2 was related to the covalent character of the Ce–O bond. Compared with the undoped CeO2, the C (or N)-doped CeO2, with steep absorption peaks at lower energy, can be used for visible-light absorption applications.  相似文献   

20.
Perylene diimide‐modified magnetic γ‐Fe2O3/CeO2 nanoparticles (γ‐Fe2O3/CeO2‐PDI) were prepared and exhibited excellent peroxidase‐like activity. The samples were characterized by HR‐TEM, XRD, Raman, N2 adsorption, magnetic strength and XPS. The obtained γ‐Fe2O3/CeO2‐PDI had size of 10~20 nm with high specific surface area of 77 m2/g, and could be easily separated from the aqueous solution by using a magnet, which are in favor of its practical application. Due to the decoration of PDI, the γ‐Fe2O3/CeO2‐PDI possessed more surface defects (Ce3+) and active oxygen species than that of γ‐Fe2O3/CeO2, resulting in the outstanding catalytic performance. And the composite catalyst also showed highly sensitive and selectivity toward VC with a limit of detection of 0.45 μM. Based on the fluorescent results, a possible hydroxyl radical (?OH) catalytic mechanism was proposed. It is believed that the as‐prepared γ‐Fe2O3/CeO2‐PDI nanoparticles are promising biosensors applied for biomedical and food analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号