首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Water adsorption measurements have been performed under equilibrium conditions for unsolvated Ac-A(n)K+H(+) and Ac-KA(n)+H(+) peptides with n = 4 - 10. Previous work on larger alanine peptides has shown that two dominant conformations (helices and globules) are present for these peptides and that water adsorbs much more strongly to the globules than to the helices. All the Ac-KA(n)+H(+) peptides studied here (which are expected to be globular) adsorb water strongly, and so do the Ac-A(n)K+H(+) peptides with n < 8. However, for Ac-A(n)K+H(+) with n = 8-10 there is a substantial drop in the propensity to adsorb water. This result suggests that Ac-A(8)K+H(+) is the smallest Ac-A(n)K+H(+) peptide to have a significant helical content in the gas phase. Water adsorption measurements for Ac-V(n)K+H(+) and Ac-L(n)K+H(+) with n = 5-10 suggest that the helix emerges at n = 8 for these peptides as well.  相似文献   

2.
Ion mobility measurements and molecular dynamics simulations were performed for unsolvated A4G7A4 + H+ and Ac-A4G7A4 + H+ (Ac = acetyl, A = alanine, G = glycine) peptides. As expected, A4G7A4 + H+ adopts a globular conformation (a compact, random-looking, three-dimensional structure) over the entire temperature range examined (100-410 K). Ac-A4G7A4 + H+ on the other hand is designed to have a flat energy landscape with a marginally stable helical state. This peptide shows at least four different conformations at low temperatures (<230 K). The two conformations with the largest cross sections are attributed to - and partial -helices, while the one with the smallest cross section is globular. The other main conformation may be partially helical. Ac-A4G7A4 + H+ becomes predominantly globular at intermediate temperatures and then becomes more helical as the temperature is raised further. This unexpected behavior may be due to the helix having a higher vibrational entropy than the globular state, as predicted by some recent calculations (Ma, B.; Tsai, C.-J.; Nussinov, R. Biophys. J. 2000, 79, 2739-2753).  相似文献   

3.
Ion mobility measurements have been used to examine the conformations present for unsolvated Ac-(AG)(7)A+H(+) and (AG)(7)A+H(+) peptides (Ac = acetyl, A = alanine, and G = glycine) over a broad temperature range (100-410 K). The results are compared to those recently reported for Ac-A(4)G(7)A(4)+H(+) and A(4)G(7)A(4)+H(+), which have the same compositions but different sequences. Ac-(AG)(7)A+H(+) shows less conformational diversity than Ac-A(4)G(7)A(4)+H(+); it is much less helical than Ac-A(4)G(7)A(4)+H(+) at the upper end of the temperature range studied, and at low temperatures, one of the two Ac-A(4)G(7)A(4)+H(+) features assigned to helical conformations is missing for Ac-(AG)(7)A+H(+). Molecular dynamics simulations suggest that the different conformational preferences are not due to differences in the stabilities of the helical states, but differences in the nonhelical states: it appears that Ac-(AG)(7)A+H(+) is more flexible and able to adopt lower energy globular conformations (compact random looking three-dimensional structures) than Ac-A(4)G(7)A(4)+H(+). The helix to globule transition that occurs for Ac-(AG)(7)A+H(+) at around 250-350 K is not a direct (two-state) process, but a creeping transition that takes place through at least one and probably several intermediates.  相似文献   

4.
The conformations of unsolvated Ac-A14KG3A14K + 2H+ (Ac = acetyl, A = alanine, K = lysine, G = glycine) have been examined by ion mobility measurements and molecular dynamics simulations. This peptide was designed as a model helix-turn-helix motif. It was found to adopt three distinct geometries which were assigned to an extended helical conformation which is only stable at low temperatures (<230 K), a relatively high energy but metastable structure with exchanged lysines, and a coiled-coil. The coiled coil (which consists of an antiparallel arrangement of two helical alanine sections linked by a flexible glycine loop) is the dominant conformation. For temperatures >350 K, the experimental results indicate the helices uncouple and the loop randomizes. From equilibrium constants determined for this helix coupling right arrow over left arrow uncoupling transition, we found DeltaH degrees = -45 kJ mol-1 and DeltaS degrees = 114 J K-1 mol-1. -DeltaH degrees is essentially the enthalpy change for docking the two helices together while DeltaS degrees is essentially the entropy change for freeing up the glycine loop.  相似文献   

5.
Ion mobility measurements have been performed for protonated polyalanine peptides (A10 + H+, A15 + H+, A20 + H+, A25 + H+, and A15NH2 + H+) as a function of temperature using a new high-temperature drift tube. Peaks due to helices and globules were found at room temperature for all peptides, except for A10 + H+ (where only the globule is present). As the temperature is increased, the helix and globule peaks broaden and merge to give a single narrow peak. This indicates that the two conformations interconvert rapidly at elevated temperatures. The positions of the merged peaks show that A15 + H+ and A15NH2 + H+ spend most of their time as globules when heated, while A20 + H+ and A25 + H+ spend most of their time as helices. The helix/globule transitions are almost certainly accompanied by intramolecular proton transfer, and so, these results suggest that the proton becomes mobile (able to migrate freely along the backbone) at around 450 K. The peptides dissociate as the temperature is increased further to give predominantly the bn(+), b(n-1)(+), b(n-2)(+), ... series of fragment ions. There is a correlation between the ease of fragmentation and the time spent in the helical conformation for the An + H+ peptides. Helix formation promotes dissociation because it pools the proton at the C-terminus where it is required for dissociation to give the observed products. In addition to the helix and globule, an antiparallel helical dimer is observed for the larger peptides. The dimer can be collisionally dissociated by injection into the drift tube at elevated kinetic energies.  相似文献   

6.
The gas-phase conformations of a series of cytosine/guanine DNA duplexes were examined by ion mobility and molecular dynamics methods. Deprotonated duplex ions were formed by electrospray ionization, and their collision cross sections measured in helium were compared to calculated cross sections of theoretical models generated by molecular dynamics. The 4-mer (dCGCG) and 6-mer (dCGCGCG) duplexes were found to have globular conformations. Globular and helical structures were observed for the 8-mer (dCGCGCGCG) duplex, with the globular form being the more favored conformer. For the 10-mer (dCGCGCGCGCG), 14-mer (dCGCGCGCGCGCGCG), and 18-mer (dCGCGCGCGCGCGCGCGCG) duplexes, only helical structures were observed in the ion mobility measurements. Theory predicts that the helical structures are less stable than the globular forms in the gas phase and should collapse into the globular form given enough time. However, molecular dynamics simulations at 300 K indicate the helical structures are stable in aqueous solution and will retain their conformations for a limited time in the gas phase. The presence of helical structures in the ion mobility experiments indicates that the duplexes retain "solution structures" in the gas phase on the millisecond time scale.  相似文献   

7.
The conformations of protonated RA15K, RA20K and RA15H (R = arginine, A = alanine, K = lysine, and H = histidine) have been examined in the gas phase as a function of temperature. These peptides were designed so that intramolecular proton transfer will trigger conformational changes between a helix (proton sequestered at the C-terminus) and globule (proton sequestered at the N-terminus). Kinetically controlled structural transitions occur below 400 K (from helix to globule for RA15H, and from globule to helix for RA15K and RA20K). As the temperature is raised, the compact globule found at room temperature expands, accesses more configurations, and becomes entropically favored. At around 500 K, the RA15K and RA20K helices undergo a melting transition. The transition is broad, as expected for a phase transition in a finite system, and becomes narrower as the peptide size increases. In the helical conformation, the two basic residues are well separated; as a result, the proton transfer necessary to drive the melting transition probably involves a mobile proton. For doubly protonated RA15K, a dumbbell-like conformation (resulting from repulsion between the two protonated basic residues) is found at high temperature.  相似文献   

8.
Ion mobility measurements have been used to examine helix formations in the gas phase for a series of alanine/glycine-based peptides that incorporate a glutamic acid (E) and lysine (K) at various positions along the backbone. Incorporation of an EK pair lowers the percent helix for all positions (presumably because hydrogen bonding between the backbone and the E and K side chains stabilize the nonhelical globular conformations). The largest percent helix is found when the EK pair is in an i,i+5 arrangement, which suggests that the preferred helical conformation for these peptides is a pi-helix. This conclusion is supported by comparison of cross sections deduced from the ion-mobility measurements to average cross sections calculated for conformations obtained from molecular dynamics simulations. The glutamic acid and lysine may form an ion pair that is stabilized by interactions with the helix macro-dipole.  相似文献   

9.
The solution structure and the dimerization behavior of the lipophilic, highly C(alpha)-methylated model peptide, mBrBz-Iva(1)-Val(2)-Iva(3)-(alphaMe)Val(4)-(alphaMe)Phe(5)-(alphaMe)Val(6)-Iva(7)-NHMe, was studied by NMR spectroscopy and molecular dynamics simulations. The conformational analysis resulted in a right-handed 3(10)/alpha-helical equilibrium fast on the NMR time scale with a slight preference for the alpha-helical conformation. The NOESY spectrum showed intermolecular NOEs due to an aggregation of the heptapeptide. In addition, temperature-dependent diffusion measurements were performed to calculate the hydrodynamic radius. All these findings are consistent with an antiparallel side-by-side dimerization. The structure of the dimeric peptide was calculated with a simulated annealing strategy. The lipophilic dimer is held together by favorable van der Waals interactions in the sense of a bulge fitting into a groove. The flexibility of the helical conformations concerning an alpha/3(10)-helical equilibrium is shown in a 3 ns molecular dynamics simulation of the resulting dimeric structure. Both overall helical structures of each monomer and the antiparallel mode of dimerization are stable. However, transitions were seen of several residues from a 3(10)-helical into an alpha-helical conformation and vice versa. Hence, this peptide represents a good model in which two often-discussed aspects of hierarchical transmembrane protein folding are present: i <-- i + 3 and i <-- i + 4 local H-bonding interactions cause a specific molecular shape which is then recognized as attractive by other surrounding structures.  相似文献   

10.
In order to characterize the effect of temperature on the retention behaviour and selectivity of separation of polypeptides and proteins in reversed-phase high-performance liquid chromatography (RP-HPLC), the chromatographic properties of four series of peptides, with different peptide conformations, have been studied as a function of temperature (5-80 degrees C). The secondary structure of model peptides was based on either the amphipathic alpha-helical peptide sequence Ac-EAEKAAKEX(D/L)EKAAKEAEK-amide, (position X being in the centre of the hydrophobic face of the alpha-helix), or the random coil peptide sequence Ac-X(D/L)LGAKGAGVG-amide, where position X is substituted by the 19 L- or D-amino acids and glycine. We have shown that the helical peptide analogues exhibited a greater effect of varying temperature on elution behaviour compared to the random coil peptide analogues, due to the unfolding of alpha-helical structure with the increase of temperature during RP-HPLC. In addition, temperature generally produced different effects on the separations of peptides with different L- or D-amino acid substitutions within the groups of helical or non-helical peptides. The results demonstrate that variations in temperature can be used to effect significant changes in selectivity among the peptide analogues despite their very high degree of sequence homology. Our results also suggest that a temperature-based approach to RP-HPLC can be used to distinguish varying amino acid substitutions at the same site of the peptide sequence. We believe that the peptide mixtures presented here provide a good model for studying temperature effects on selectivity due to conformational differences of peptides, both for the rational development of peptide separation optimization protocols and a probe to distinguish between peptide conformations.  相似文献   

11.
Electrospraying a mixture of Ac-(GA)7K and Ac-A(GA)7K (Ac = acetyl, G = glycine, A = alanine, and K = lysine) peptides produces strong signals for unsolvated dimers and trimers. The conformations of these multimers have been examined with use of ion mobility measurements in conjunction with molecular dynamics simulations. The results suggest that the trimers adopt a pinwheel arrangement of helices with the C-termini tethered together by the protonated lysine side chain from one peptide interacting with the C-terminus of a neighboring helix. This arrangement leads to a cooperative electrostatic stabilization of all the helices through the interaction of the combined charge with the helix dipoles. The dimer adopts a related V-shaped arrangement of helices which is also cooperatively stabilized.  相似文献   

12.
Molecular strands composed of alternating 2,6-diaminopyridine and 2,6-pyridinedicarbonyl units have been designed to self-organize into single stranded helical structures upon forming intramolecular hydrogen bonds. Pentameric strands 11, 12, and 14, heptameric strands 1 and 20, and undecameric strand 15 have been synthesized using stepwise convergent strategies. Single helical conformations have been characterized in the solid state by single crystal X-ray diffraction analysis for four of these compounds. Helices from pentameric strands 12 and 14 extend over one turn, and helices from heptameric 20 and undecameric 15 species extend to one and a half and two and a half turns, respectively. Intramolecular hydrogen bonds are responsible for the strong bending of the strands. 1H NMR shifts both in polar and nonpolar organic solvents indicate intramolecular overlap between the peripheral aromatic groups. Thus, helical conformations also predominate in solution. Molecular stochastic dynamic simulations of strand folding starting from a high energy extended linear conformer show a rapid (600 ps at 300 K) conversion into a stable helical conformation.  相似文献   

13.
alpha-Helix formation is known to be opposed by the entropy loss due to the folding and favored by the energy of molecular interactions. However, the underlying mechanism of these factors is still being discussed. Here we have used the experimental and calculation data for short alanine-based peptides embedded in water to model the mechanism of helix folding and unfolding and to calculate microscopically the free energy factors of alanine in the frame of helix coil conformational integrals. Classical helix-coil transition theories take into account the interactions in a peptide chain only if the i, i + 3 peptide bond participates in hydrogen bonding. But quantum mechanical calculations showed that interactions of the i, i + 2 peptide bond play an important role in helix folding too. We also included the short-range repulsive interactions due to molecular steric clashes and the end effects due to polar/hydrogen-bonding interactions at the N and C termini. The helix and coil regions of peptide conformational space were defined using an experimental steric criterion for hydrogen bonding. Arginine helix propensity was discussed and estimated. Monte Carlo numerical simulations of thermodynamics and kinetics for the 21 amino acid alpha-helical polypeptide Ac-A5(AAARA)3A-NMe were carried out and found to be in an agreement with the experimental results.  相似文献   

14.
15.
We have used ion mobility mass spectrometry to study the effect of d-residues on helix formation in unsolvated alanine-based peptides. The right-handed helix of AC-A15K + H+ is significantly disrupted when five or more of the natural L-residues are randomly replaced with D-residues. On the other hand, when a block of L-residues is replaced with D-residues, an unusual ambidextrous structure with helical segments of opposite chirality is formed. A peptide with all D-residues forms a left-handed helix.  相似文献   

16.
Infrared (IR) and vibrational circular dichroism (VCD) spectra were measured for a series of isotopically ((13)C on two or more amide Cdouble bond]O) labeled, 25 residue, alpha-helical peptides of the sequence Ac-(AAAAK)(4)AAAAY-NH(2) that were also studied in the previous paper. Theoretical IR and VCD simulations were performed for correspondingly isotopically labeled Ac-A(24)-NHCH(3) constrained to an alpha-helical conformation by use of property tensor transfer from density functional theory (DFT) calculations on Ac-A(10)-NHCH(3). The simulations predicted and experiments confirmed that the vibrational coupling constants between i, i + 1 and i, i + 2 residues differ in sign, thus leading to a reversal of the (13)C VCD pattern and explaining the large shift in the (13)C amide I frequency as reported in the previous paper. The sign of the coupling constant remained consistent for larger label separation (with the exception of i, i + 4) and for more labels with uniform separation. Such effects confirm that the isotopically labeled group vibrations are essentially only coupled to each other and are effectively uncoupled from those of the unlabeled groups. This development confirms the utility of isotopic labels for site-specific structural studies with vibrational spectra. Observed spectral effects cannot be explained by considering only transition dipole coupling (TDC) between amide oscillators, particularly for smaller label separations, but the TDC and ab initio predicted couplings roughly converge at large separation.  相似文献   

17.
The conformational structures of protonated polyalanine peptides, Ala(n)H(+), have been investigated in the gas phase for n = 3, 4, 5, and 7 using a combination of resonant-infrared multiphoton dissociation (R-IRMPD) spectroscopy in the NH and OH stretch regions and quantum chemical calculations. Agreement between theoretical IR and experimental R-IRMPD spectral features has enabled the assignment of specific hydrogen-bonded conformational motifs in the short protonated peptides and revealed their conformational evolution under elevated-temperature conditions, as a function of increasing chain length. The shortest peptide, Ala(3)H(+), adopts a mixture of extended and cyclic chain conformations, protonated, respectively, at a backbone carbonyl or the N-terminus. The longer peptides adopt folded, cyclic, and globular charge-solvated conformations protonated at the N-terminus, consistent with previous ion-mobility studies. The longest peptide, Ala(7)H(+), adopts a globular conformation with the N-terminus completely charge-solvated, demonstrating the emergence of "physiologically relevant" intramolecular interactions in the peptide backbone. The computed conformational relative free energies highlight the importance of entropic contributions in these peptides.  相似文献   

18.
The structural characterization in crystals of three designed decapeptides containing a double d-segment at the C-terminus is described. The crystal structures of the peptides Boc-Leu-Aib-Val-Xxx-Leu-Aib-Val-(D)Ala-(D)Leu-Aib-OMe, (Xxx = Gly 2, (D)Ala 3, Aib 4) have been determined and compared with those reported earlier for peptide 1 (Xxx = Ala) and the all l analogue Boc-Leu-Aib-Val-Ala-Leu-Aib-Val-Ala-Leu-Aib-OMe, which yielded a perfect right-handed alpha-helical structure. Peptides 1 and 2 reveal a right-handed helical segment spanning residues 1 to 7, ending in a Schellman motif with (D)Ala(8) functioning as the terminating residue. Polypeptide chain reversal occurs at residue 9, a novel feature that appears to be the consequence of a C-H.O hydrogen bond between residue 4 C(alpha)H and residue 9 CO groups. The structures of peptides 3 and 4, which lack the pro R hydrogen at the C(alpha) atom of residue 4, are dramatically different. Peptide 3 adopts a right-handed helical conformation over the 1 to 7 segment. Residues 8 and 9 adopt alpha(L) conformations forming a C-terminus type I' beta-turn, corresponding to an incipient left-handed twist of the polypeptide chain. In peptide 4, helix termination occurs at Aib(6), with residues 6 to 9 forming a left-handed helix, resulting in a structure that accommodates direct fusion of two helical segments of opposite twist. Peptides 3 and 4 provide examples of chiral residues occurring in the less favored sense of helical twist; (D)Ala(4) in peptide 3 adopts an alpha(R) conformation, while (L)Val(7) in 4 adopts an alpha(L) conformation. The structural comparison of the decapeptides reported here provides evidence for the role of specific C-H.O hydrogen bonds in stabilizing chain reversals at helix termini, which may be relevant in aligning contiguous helical and strand segments in polypeptide structures.  相似文献   

19.
Many antimicrobial peptides form alpha-helices when bound to a membrane. In addition, around 80% of residues in membrane-bound proteins are found in alpha-helical regions. The orientation and location of such helical peptides and proteins in the membrane are key factors determining their function and activity. Here we present a new solution state NMR method for obtaining the orientation of helical peptides in a membrane-mimetic environment (micelle-bound) without any chemical perturbation of the peptide-micelle system. By monitoring proton longitudinal relaxation rates upon addition of the freely water-soluble and inert paramagnetic probe Gd(DTPA-BMA) to an alpha-helical peptide, a wavelike pattern with a periodicity of 3.6 residues per turn is observed. The tilt and azimuth (rotation) angle of the helix determine the shape of this paramagnetic relaxation wave and can be obtained by least-square fitting of measured relaxation enhancements. Results are presented for the 15-residue antimicrobial peptide CM15 which forms an amphipathic helix almost parallel to the surface of the micelle. Thus, a few fast experiments enable the identification of helical regions and determination of the helix orientation within the micelle without the need for covalent modification, isotopic labeling, or sophisticated equipment. This approach opens a path toward the topology determination of alpha-helical membrane-proteins without the need for a complete NOE-based structure determination.  相似文献   

20.
We here report the nanostructures from combinational self-assembly of two designer lipid-like peptides Ac-A6D-OH and Ac-A6K-NH2 using dynamic light scattering (DLS) and atomic force microscopy (AFM). The synergistic phenomenon is observed by measuring the critical aggregation concentrations (CACs) of these two mixed peptides, in different molar ratios by DLS. The nanoropes were observed in AFM images at a molar ratio of Ac-A6D-OH/Ac-A6K-NH2 = 1:1, and the thin film formation with aligned nanoropes is shown at a molar ratio of 2:1. The well aligned nanoropes at the molar ratio of Ac-A6D-OH/Ac-A6K-NH2 = 2:1 indicated the competition factor between the electrostatic repulsion according to DLVO theory and the hydrophobic interaction arising from the long side chains on lysine residues. This study will further our understanding for designing new nanomaterials based on designer lipid-like peptide surfactants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号