首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mixtures of aldehydes and/or ketones have been separated by salting-out chromatography. The effects of such variables as sample size, flow rate, concentration of the eluent, cross-linking, mesh size, and type of resin on the elution behavior of the compounds were studied. Salting-out parameters were determined for thirteen ketones and four aldehydes. The differential pH method of Roe and Mitchell is applicable to the determination of carbonyl compounds in aqueous salt solutions.  相似文献   

2.
Summary Sensitive and selective detection of dansylhydrazones of atmospheric carbonyl compounds (aldehydes and ketones) can be achieved using high performance liquid chromatography (HPLC) with fluorescence or chemiluminescence detection. The carbonyl compounds are derivatized by drawing air through small glass cartridges packed with porous glass particles impregnated with dansylhydrazine. After sampling, the contents of the cartridges are analyzed on-line by using a small plug of water (200 L) to transfer and focus the hydrazone derivatives at the head of a HPLC column. Greatly increased sensitivity over traditional methods derives from 1) analysis of the entire contents of the sampling cartridge, and 2) detection by fluoresence or peroxyoxalate chemilum-inescence. Results are compared for photo-initiated and H2O2-initiated peroxyoxalate chemiluminescence. This novel and practical system enables the detection of sub-ppbv concentrations of formaldehyde, acetaldehyde, acetone and higher carbonyls in air using relatively short sampling times.  相似文献   

3.
A procedure for coating in situ silica gel in prepacked cartridges with 2,4-dinitrophenylhydrazine (DNPH) acidified with hydrochloric acid is described. The coated cartridge was compared with a validated DNPH impinger method for sampling organic carbonyl compounds (aldehydes and ketones) in diluted automotive exhaust emissions and in ambient air for subsequent analysis of the DNPH derivatives by high performance liquid chromatography. Qualitative and quantitative data are presented that show that the two sampling devices are equivalent. The coated cartridge is ideal for long-term sampling of carbonyls at sub to low parts-per-billion level in ambient air or for short-term sampling of carbonyls at low ppb to parts-per-million level in diluted automotive exhaust emissions. An unknown degradation product of acrolein has been tentatively identified as x-acrolein. The disappearance of acrolein in the analytical sample matrix correlates quantitatively almost on a mole for mole basis with the growth of x-acrolein. The sum of the concentration of acrolein and x-acrolein appears to be invariant with time.  相似文献   

4.
Solid sorbents coated with the fluorescent reagent 5-dimethylaminonaphthalene-1-sulfohydrazide (dansylhydrazine, DNSH) have been used for derivatization and quantitative determination of airborne carbonyl compounds, for example in investigations on atmospheric pollution. The evaluation of this derivatization reaction presented here revealed that, for several reasons, it may not be recommended when sampling is performed with impingers containing liquid reagent solutions. Derivative yields came out to be strongly influenced by water and phosphoric acid which are essential for sufficient derivatization rates, but also responsible for the degradation of derivatives. Even at water and acid concentrations considered as an optimal compromise between accelerating and degrading effects, the analytical reliability of the method can only be guaranteed under controlled laboratory conditions. The reduced or lacking reactivity of DNSH towards aromatic aldehydes or aliphatic and aromatic ketones is an additional finding discarding the DNSH method for routine air monitoring at least when impingers are used for sampling. Received: 8 January 1998 / Revised: 9 March 1998 / Accepted: 15 March 1998  相似文献   

5.
Solid sorbents coated with the fluorescent reagent 5-dimethylaminonaphthalene-1-sulfohydrazide (dansylhydrazine, DNSH) have been used for derivatization and quantitative determination of airborne carbonyl compounds, for example in investigations on atmospheric pollution. The evaluation of this derivatization reaction presented here revealed that, for several reasons, it may not be recommended when sampling is performed with impingers containing liquid reagent solutions. Derivative yields came out to be strongly influenced by water and phosphoric acid which are essential for sufficient derivatization rates, but also responsible for the degradation of derivatives. Even at water and acid concentrations considered as an optimal compromise between accelerating and degrading effects, the analytical reliability of the method can only be guaranteed under controlled laboratory conditions. The reduced or lacking reactivity of DNSH towards aromatic aldehydes or aliphatic and aromatic ketones is an additional finding discarding the DNSH method for routine air monitoring at least when impingers are used for sampling.  相似文献   

6.
Using toxicity data for 30 aliphatic polarized alpha,beta-unsaturated derivatives of esters, aldehydes, and ketones, a series of six structure-toxicity relationships were evaluated. The structure feature of all assessed compounds, an acetylenic or olefinic moiety conjugated to a carbonyl group, is inherently electrophilic and conveys the capacity to exhibit enhanced toxicity. However, the toxic potency of alpha,beta-unsaturated carbonyl compounds is dependent on the specific molecular structure with several trends being observed. Specific observations include: (1) between homologues, the acetylenic-substituted derivative was more toxic than the corresponding olefinic-substituted one, respectively; (2) between olefinic-homologues, terminal vinyl-substituted derivative was more toxic than the internal vinylene-substituted one; (3) within alpha,beta-unsaturated ketones, methyl substitution on the vinyl carbon atoms reduces toxicity with methyl-substitution on the carbon atom farthest from the carbonyl group exhibiting the greater inhibition; (4) between alpha,beta-unsaturated carbonyl compounds with the carbon-carbon double bond on the end of the molecule (vinyl ketones) and those with carbon-oxygen double bonds on the end of the molecule (aldehydes), the ketones are more toxic than the aldehydes; (5) between homologues of alpha,beta-unsaturated esters, those with additional unsaturated moieties (allyl, propargyl, or vinyl groups) were more toxic than homologues having relevant unsaturated moieties (propyl or ethyl groups); (6) between alpha,beta-unsaturated carbonyl compounds with different shaped alkyl-groups (i.e. different degrees of branching), homologues with straight-chain hydrocarbon moieties were more toxic than those with branched groups.  相似文献   

7.
Using toxicity data for 30 aliphatic polarized α,β-unsaturated derivatives of esters, aldehydes, and ketones, a series of six structure–toxicity relationships were evaluated. The structure feature of all assessed compounds, an acetylenic or olefinic moiety conjugated to a carbonyl group, is inherently electrophilic and conveys the capacity to exhibit enhanced toxicity. However, the toxic potency of α,β-unsaturated carbonyl compounds is dependent on the specific molecular structure with several trends being observed. Specific observations include: (1) between homologues, the acetylenic-substituted derivative was more toxic than the corresponding olefinic-substituted one, respectively; (2) between olefinic-homologues, terminal vinyl-substituted derivative was more toxic than the internal vinylene-substituted one; (3) within α,β-unsaturated ketones, methyl substitution on the vinyl carbon atoms reduces toxicity with methyl-substitution on the carbon atom farthest from the carbonyl group exhibiting the greater inhibition; (4) between α,β-unsaturated carbonyl compounds with the carbon–carbon double bond on the end of the molecule (vinyl ketones) and those with carbon–oxygen double bonds on the end of the molecule (aldehydes), the ketones are more toxic than the aldehydes; (5) between homologues of α,β-unsaturated esters, those with additional unsaturated moieties (allyl, propargyl, or vinyl groups) were more toxic than homologues having relevant unsaturated moieties (propyl or ethyl groups); (6) between α,β-unsaturated carbonyl compounds with different shaped alkyl-groups (i.e. different degrees of branching), homologues with straight-chain hydrocarbon moieties were more toxic than those with branched groups.  相似文献   

8.
The lipid peroxidation of fatty acids leads to secondary products, among which several carbonyl compounds are of concern in food toxicology. The detection of these reactive aldehydes for identification and evaluation is required. Derivatization is necessary to improve their stability and detection in liquid chromatography/high-resolution mass spectrometry (LC/HRMS) trace analyses. Therefore, a brominated O-benzylhydroxylamine, namely 1-((ammoniooxy)methyl)-2-bromobenzene chloride, was selected as a new probe for the mild and selective derivatization of carbonyl compounds. New oxime ethers were thus synthesized under mild reaction and workup conditions, with full analytical characterization. The relevance of the chemical reaction was assessed with nine aldehydes, especially conjugated and deuterium-labeled aldehydes, and two ketones. Virtually, the reaction should be applicable to a large set of carbonyl compounds for derivatization in complex biological samples and selective detection of the in situ–synthesized brominated oxime ethers by LC/HRMS methodology.  相似文献   

9.
手性芳基醇是一类重要的合成砌块,广泛存在于许多生物活性分子以及天然产物中,因此,高效高选择性地构建该类化合物是有机化学家们一直关注的研究热点.金属试剂对羰基化合物的不对称加成是构建手性芳基醇的一个简单高效的方法,其中,有机硼试剂由于其方便易得、稳定、低毒、官能团耐受性好等优点而被广泛用于醛、酮的不对称加成反应中.本文综述了过去二十年来过渡金属催化的有机硼试剂对醛、酮的不对称加成反应研究进展,并介绍了一些方法在生物活性手性分子合成中的应用.  相似文献   

10.
In a previous study, we identified carbonyls as highly odor-active compounds in both unprocessed and processed polypropylene (PP) with higher intensities after processing, indicating a temperature-driven forming mechanism. In the presented work, we studied whether (a) these carbonyls are the major odor drivers to the overall odor of polyolefins, (b) their formation is taking place already at moderate temperatures well below the typical processing temperatures, (c) conventional antioxidants in polyolefins can prevent or reduce their formation, and (d) whether reducing the amount of oxygen present can decrease the overall odor. One polyethylene (PE) and one PP were selected, and both stabilized and unstabilized polymer powder samples were exposed to conditions differing in oxygen concentration and aging time. The changes in the volatile fraction as well as the formation of odor-active compounds were monitored using a multidisciplinary approach by combining analytical methods based on gas chromatography (GC), multivariate data analysis, and sensory methods (GC–olfactometry and a sensory panel). Both investigated materials (PE and PP) showed similar degradation products (aldehydes, ketones, carboxylic acids, alcohols, and lactones) which increased dramatically with increasing aging time and the lack of stabilization. Oxidation products, mainly carbonyl compounds, were responsible for the odor of the investigated materials. The main odor drivers were unsaturated ketones and aldehydes with a chain length between six and nine C-atoms. Interestingly, similar odor patterns were found for both stabilized and unstabilized samples, indicating that similar formation processes take place independent of the stabilization.  相似文献   

11.
The click-chemistry capture of volatile aldehydes and ketones by ammonium aminooxy compounds has proven to be an efficient means of analyzing the carbonyl subset in complex mixtures, such as exhaled breath or environmental air. In this work, we examine the carbonyl condensation reaction kinetics of three aminooxy compounds with varying β-ammonium ion substitution using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). We determined the activation energies for the reactions of the aminooxy compounds ATM, ADMH and AMAH with a panel of ketones and aldehydes that included acrolein and crotonaldehyde. The measurements indicate that the activation energies for the oximation reactions are quite low, less than 75 kJ mol−1. ADMH is observed to react the fastest with the carbonyls studied. We postulate this result may be attributed to the ADMH ammonium proton effecting a Brønsted-Lowry acid-catalyzed elimination of water during the rate-determining step of oxime ether formation. A theoretical study of oxime ether formation is presented to explain the enhanced reactivity of ADMH relative to the tetraalkylammonium analog ATM.  相似文献   

12.
The use of bisulfite derivatives of liquid aldehydes and cyclic ketones is reported to facilitate sample handling in mass spectral analysis of these compounds. The carbonyl compounds can be regenerated from their sulfinate derivatives in the direct probe. Precautions must be taken to avoid back exchange of enolizable deuterium atoms in labeled carbonyl compounds.  相似文献   

13.
Reduction of varieties of carbonyl compounds such as aldehydes, ketones, α,β‐unsaturated aldehydes and ketones, α‐diketones and acyloins was carried out very fast and efficiently by sodium borohydride in water under microwave irradiation. The corresponding product alcohols were obtained in high to excellent yields.  相似文献   

14.
朱树芸  赵先恩  刘虎威 《色谱》2021,39(8):845-854
人体接触环境中的化学污染物会导致多种疾病,包括癌症、糖尿病、心血管疾病、神经退行性疾病(阿尔茨海默症、帕金森病等)等。作为一类具有高反应活性的亲电化合物,醛类(包括外源性醛类或环境污染物暴露后产生的内源性醛类)可与人体中多种重要生物分子形成共价修饰产物而产生毒害作用。暴露组研究自2005年被首次提出以来一直是一个前沿热门领域,暴露组研究可绘制生物标志物与疾病风险之间的复杂关系,因此,所有生物标志物的可测量的和特征性的变化共同构成了暴露组研究的关键基础。醛类是化学暴露组的主要成分之一。由于醛类化合物自身物理化学性质和样品大量基质干扰存在,对它们进行分析和表征特别困难。醛类化合物的分析检测方法主要有传感分析法、电化学法、荧光成像、色谱法、质谱法、色谱-质谱联用法等。基于色谱-质谱的分析技术已成为化学暴露组研究的主要方法之一。化学衍生化,特别是稳定同位素标记衍生化(亦称化学同位素标记)结合液相色谱-质谱(LC-MS)技术能够解决靶向和非靶向代谢组和暴露组分析工作中的诸多问题。化学衍生化联合色谱-质谱的分析策略是复杂体系中醛类精准分析非常重要的解决方案之一。特别是近5年,基于化学衍生化的色谱-质谱分析方法开发与应用已成为醛类分析方法中的热点和亮点。该文主要总结与评述了近5年基于化学衍生化的气相色谱-质谱(GC-MS)和LC-MS最新进展,重点关注生物基质(血液、尿液、唾液、生物组织等)中醛类暴露标志物的分析方法进展。通过探讨标记小分子醛的各种衍生试剂、定性/定量分析方法及应用价值,评述醛类暴露标志物不同分析方法的优缺点以及未来发展趋势,为暴露组学、代谢组学、脂质组学的整合发展和环境生态健康研究提供一定的帮助。为了阐明外源性和内源性醛类化合物在生理和病理事件中所起的复杂作用,需要大力改进研究醛组学(aldehydome)的分析表征技术和工具。随着更先进的质谱仪的研发和使用,以及高效色谱分离和不断进步的生物信息学手段,并同时伴随着单细胞分析、质谱成像的兴起,未来的醛类暴露组分析方法会具有更高的灵敏度、更高的分析通量,更有希望筛选鉴定未知醛类化合物并发现新的暴露组生物标志物。  相似文献   

15.
Solid phase microextraction (SPME) is an increasingly common method of sample isolation and enhancement. SPME is a convenient and simple sample preparation technique for chromatographic analysis and a useful alternative to liquid-liquid extraction and solid phase extraction. SPME is speed and simply method, which has been widely used in environmental analysis because it is a rather safe method when dealing with highly toxic chemicals. A combination of SPME and gas chromatography (GC) permits both the qualitative and quantitative analysis of toxic industrial compounds, pesticides and chemical warfare agents (CWAs), including their degradation products, in air, water and soil samples. This work presents a combination of SPME and GC methods with various types of detectors in the analysis of CWAs and their degradation products in air, water, soil and other matrices. The combination of SPME and GC methods allows for low detection limits depending on the analyte, matrix and detection system. Commercially available fibers have been mainly used to extract CWAs in headspace analysis. However, attempts have been made to introduce new fiber coatings that are characterized by higher selectivities towards different analytes of interest. Environmental decomposition of CWAs leads to the formation of more hydrophilic products. These compounds may be isolated from samples using SPME and analyzed using GC however, they must often be derivatized first to produce good chromatography. In these cases, one must ensure that the SPME method also meets the same needs. Otherwise, it is helpful to use derivatization methods. SPME may also be used with fieldportable mass spectrometry (MS) and GC-MS instruments for chemical defense applications, including field sampling and analysis. SPME fibers can be taken into contaminated areas to directly sample air, headspaces above solutions, soils and water.  相似文献   

16.
The quantification of carbonyl compounds in air samples using an internal calibration approach with stable isotope-labelled standards and HPLC-atmospheric pressure chemical ionization MS analysis is presented. 2,4-Dinitro-3,5,6-trideuterophenylhydrazine and various of its hydrazones have been synthesized and characterized for the first time. The respective stable isotope-labelled hydrazones of a series of aldehydes and ketones are applied as internal standards for the determination of the carbonyls in car exhaust samples. Various aldehydes are identified and quantified by MS detection. The results exhibit good agreement to quantification data obtained with UV detection.  相似文献   

17.
The hydrosilylation of various carbonyl compounds such as simple aldehydes, simple ketones, α,β-unsaturated carbonyl compounds, α-diketones, acyl cyanides and ketones having an electron-withdrawing group on the α-carbon using tris(triphenylphosphine)chlororhodium as a catalyst is described. Solvolysis of these silyl ethers and silyl enol ethers afforded the corresponding reduced products. The hydrosilylation of α,β-unsaturated carbonyl compounds was found to proceed by 1,4-addition. An oxidative adduct of triethylsilane to the rhodium-(I) complex was obtained as a reaction intermediate. The structure of the adduct was discussed on the basis of its IR and far-IR spectra.  相似文献   

18.

A method has been developed to measure aldehydes and ketones associated with atmospheric particles. Carbonyl compounds from particulate material collected on Teflon-coated glass-fiber filters were simultaneously extracted and derivatized with an appropriate 2,4-dinitrophenylhydrazine (2,4-DNPH) solution. The efficiency of this procedure utilizing various 2,4-DNPH concentrations and solvent compositions was studied for 13 carbonyl compounds of atmospheric importance. These include formaldehyde, acetaldehyde, acetone, dicarbonyls such as glyoxal and methylglyoxal, and biogenic carbonyls such as pinonaldehyde and nopinone. An extraction solution containing 3 × 10?2 M 2,4-DNPH, in 60% acetonitrile/40% water, and pH 3 was most efficient in extracting and derivatizing these aldehydes and ketones (83-100% recovery). Improved sample enrichment and 2,4-DNPH purification methods were developed that afforded detection limits of 0.009-5.6 ng m?3. The relative standard deviation for replicate analyses were 1.9-10.1%. Carbonyl compounds in ambient particulate samples were quantified during a recent field study. Median values for nine carbonyl species ranged from 0.01-33.9 ng m?3 during the study.  相似文献   

19.
本文主要论述极性转换的基本概念和它在有机合成中的作用。先介绍了羰基化合物(醛、酮)的极性转换的各种方法,然后谈到胺的极性转换方法和最常用的极性转换试剂。  相似文献   

20.
In this contribution, bar adsorptive micro-extraction using polystyrene-divinylbenzene sorbent phase and in situ derivatization with pentafluorophenyl hydrazine, followed by liquid desorption and high-performance liquid chromatography-diode array detection (BAμE(PS-DVB)(PFPH in situ)-LD/HPLC-DAD), was developed for the determination of six short-chain carbonyl compounds (formaldehyde, acetaldehyde, propanal, acetone, butanone, and 2-hexenal) in drinking water matrices. PFPH presented very good specificity as an in situ derivatization agent for short-chain ketones and aldehydes in aqueous media, allowing the formation of adducts with remarkable sensitivity, selectivity and the absence of photodegradation. Assays performed on 30-mL water samples spiked at the 25.0 μg L(-1) levels, under optimized experimental conditions, yielded recoveries ranging from 47.4 ± 3.8% to 85.2 ± 3.8%, in which the PS-DVB proved to be a convenient sorbent phase. The analytical performance showed good accuracy, suitable precision (RSD < 13.0%), detection limits in between 47 and 132 ng L(-1) and remarkable linear dynamic ranges (r(2) > 0.9907) from 1.0 to 80.0 μg L(-1). By using the standard addition methodology, the application of the present method to drinking water samples treated with different disinfectants, namely, chloride, ozone and both, allowed very good performances to monitor these priority compounds at the trace level. The proposed methodology proved to be a feasible alternative for polar compound analysis, showing to be easy to implement, reliable, sensitive and requiring a low sample volume to monitor short-chain aldehydes and ketones in drinking water matrices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号