首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The proof of concept of a continuously sensing affinity device based on the glucose-dependent viscosity of a sensitive solution containing dextran and Concanavalin A has been successfully demonstrated. The biosensor incorporates a piezoelectric diaphragm and a flow-resisting microchannel for viscosity detection, and a free-standing Anodic Alumina Oxide (AAO) porous nano-membrane as glucose selective interface. Extensive in vitro glucose measurements between two physiologically relevant glucose concentrations, 2 mM and 9 mM (respectively hypo- and hyperglycemia), were successfully performed during 4 days. To the best of our knowledge, such reversibility and stability of glucose measurement over time had not been reported yet.  相似文献   

2.
A microfluidic device coupling immunological and enzymatic assays within a single microchannel has been developed for simultaneous measurements of insulin and glucose. Such a dual-mode (enzyme/immuno) protocol involves precolumn reactions of insulin and glucose with the enzyme-labeled anti-human insulin and glucose-dehydrogenase/NAD+, respectively, followed by the electrophoretic separation of the free antibody, antibody-antigen complex, and the NADH product of the enzymatic reaction. The separation is followed by a postcolumn reaction of the alkaline-phosphatase tracer with the p-NPP substrate and a downstream amperometric detection of the p-nitrophenol and NADH products. Despite the huge concentration difference [millimolar (glucose) and nanomolar (insulin)] and the use of different assay principles, the new biochip responds independently to the corresponding target analytes, with linear dynamic ranges over their clinically relevant ranges. Complete assays, carried out within less than 4 min, lead to good precision (RSD 0.36%) for the insulin/glucose ratio. The resulting biochip allows simultaneous testing for insulin and glucose to be performed more rapidly, easily, and economically, and hence it holds great promise for improved management of diabetes.  相似文献   

3.
Toward a glucose biosensor based on surface-enhanced Raman scattering   总被引:3,自引:0,他引:3  
This work presents the first step toward a glucose biosensor using surface-enhanced Raman spectroscopy (SERS). Historically, glucose has been extremely difficult to detect by SERS because it has a small normal Raman cross section and adsorbs weakly or not at all to bare silver surfaces. In this paper, we report the first systematic study of the direct detection of glucose using SERS. Glucose is partitioned into an alkanethiol monolayer adsorbed on a silver film over nanosphere (AgFON) surface and thereby, it is preconcentrated within the 0-4 nm thick zone of electromagnetic field enhancement. The experiments presented herein utilize leave-one-out partial least-squares (LOO-PLS) analysis to demonstrate quantitative glucose detection both over a large (0-250 mM) and clinically relevant (0-25 mM) concentration range. The root-mean-squared error of prediction (RMSEP) of 1.8 mM (33.1 mg/dL) in the clinical study is near that desired for medical applications (1 mM, 18 mg/dL). Future studies will advance toward true in vivo, real time, minimally invasive sensing.  相似文献   

4.
A new dicationic diboronic acid structure, DBA2+ , was designed to exhibit good affinity (Kd≈1 mm ) and selectivity toward glucose. Binding of DBA2+ to glucose changes the pKa of DBA2+ from 9.4 to 6.3, enabling opportunities for detection of glucose at physiological pH. Proton release from DBA2+ is firmly related to glucose concentrations within the physiologically relevant range (0–30 mm ), as verified by conductimetric monitoring. Negligible interference from other sugars (for example, maltose, fructose, sucrose, lactose, and galactose) was observed. These results demonstrate the potential of DBA2+ for selective, quantitative glucose sensing. The nonenzymatic strategy based on electrohydrodynamic effects may enable the development of stable, accurate, and continuous glucose monitoring platforms.  相似文献   

5.
In Part 1 of this series (Anal. Sci., 2006, 22, 383), design, fabrication, and optical data acquisition of an array of tiny color changing capsules embedded in a cellulose acetate bar, called the "sliver sensor", have been described. Capsule colors are read by a CCD camera and translated into blue, red and green Kubelka-Munk variables for quantitative analysis. The respective concentrations are determined using prior calibration. The approach may be adapted to different non-biological analytical problems, as well as in vitro and in vivo applications. To demonstrate this adaptability to potential in vivo use as an example, sensitivity for each target ion was tuned to cover the respective interstitial levels by varying the relative amount of ionophore used in the corresponding microscopic beads. After optimizing the ratio of glucose oxidase (GOX)-containing beads relative to the coupled pH sensing beads and their composition, reversible color response to glucose was obtained in the entire clinically relevant glucose concentration range (10 to 600 mg/dL, 0.55 to 33 mM). Decoupling of pH and glucose sensing from possible variations in interstitial sodium level and buffer capacity is currently being optimized for future in vivo use. In vitro and non-biological applications are also being explored.  相似文献   

6.
《Vibrational Spectroscopy》2007,43(1):184-192
Quasi-continuous glucose monitoring has been realised for a bed-side device based on reagent-free transmission spectroscopy of microliter dialysate sample volumes. Aqueous glucose solutions and serum ultrafiltrates were used for in vitro testing, whereas in vivo samples were provided by a subcutaneously implanted micro-dialysis probe. Both sample types were transported to a thermostated flow-through micro-cell, housed within the sample compartment of a Fourier-transform mini-spectrometer, by using a programmable fluidic system consisting of a six-port valve with sample loop and a syringe pump. Different options were implemented for spectral evaluation based on multivariate calibration using either partial or classical least squares. The latter approach includes the additional quantification of most relevant dialysate components such as urea, lactate, bicarbonate and others. Automated operator-free in vitro operation with reliable glucose quantification over at least 72 h was tested for analytical performance characterisation. Routines for sensitive air bubble detection by infrared spectrometry including automated removal by the fluidic system have also been implemented.  相似文献   

7.
Glycated peptides arising from in vivo digestion of glycated proteins, usually called advanced glycation end (AGE) product peptides, are biologically relevant compounds due to their reactivity towards circulating and tissue proteins. To investigate their structures, in vitro glycation of human serum albumin (HSA) has been performed and followed by enzymatic digestion. Using different MALDI based approaches the digestion products obtained have been compared with those arising from enzymatic digestion of the protein. Results obtained using 2,5-dihydroxybenzoic acid (DHB) indicate this as the most effective matrix, leading to an increase in the coverage of the glycated protein. Off-line microbore liquid chromatography prior to MALDI analysis reveals that 63% of the free amino groups amenable to glycation are modified. In addition, the same approach shows the co-presence of underivatised peptides. This indicates that, regardless of the high glucose concentration employed for HSA incubation, glycation does not go to completion. Tandem mass spectrometric data suggest that the collision induced dissociation of singly charged glycated peptides leads to specific fragmentation pathways related to the condensed glucose molecule. The specific neutral losses derived from the activated glycated peptides can be used as signature for establishing the occurrence of glycation processes.  相似文献   

8.
Rong Z  Cheema U  Vadgama P 《The Analyst》2006,131(7):816-821
Rapid response needle enzyme electrodes were fabricated to measure the glucose concentration at the centre of a cylindrical spiralled collagen gel, which is a relevant constituent for tissue engineering scaffolds. The experimental data were based on a low consumption glucose sensor which minimised the distorting effect of enzymatic degradation. As the measurement was carried out within a collagen gel the stirring independence was compulsory for the biosensor. Glucose concentration changes were derived from a model based on the solution to Fick's Second Law. This had two different expressions for different dimensionless time (T) domains. The expression for large T and a first order approximation for small T were known. The expression for high order approximation for small T was then derived. An analytical expression consisting of fast convergent parts of these two expressions is proposed, which operates for the entire time region. A computational model for glucose concentration evolution where an electrode is located is proposed to operate for extended time periods. The model was confirmed by agreement between the simulated and observed data. An experimental technique is developed here to determine glucose diffusion coefficient by fitting the simulated concentration profile to the observed one. The glucose diffusion coefficient within the collagen gel was estimated to be 1.3 x 10(-6) cm(2) s(-1); higher accuracy is achieved here because errors due to noise, baseline and zero time determination are minimised with best fit.  相似文献   

9.
Chemiluminescence detection was developed as an alternative to amperometric detection for glucose analysis in a portable, microfluidics-based continuous glucose monitoring system. Amperometric detection allows easy determination of hydrogen peroxide, a product of the glucose oxidase-catalyzed reaction of glucose with oxygen, by oxidation at a microelectrode. However, (micro)electrodes in direct contact with physiological sample are subject to electrode fouling, which leads to signal drift, decreased reproducibility and shortened detector lifetimes. Moreover, there are a few species present in the body (e.g. ascorbic acid, uric acid) which can undergo oxidation at the same applied potential as hydrogen peroxide. These species can thus interfere with the glucose measurement, reducing detection specificity. The rationale for exploring chemiluminescence as opposed to amperometric detection is thus to attempt to improve the lifetime and reproducibility of glucose analysis for monitoring purposes, while reducing interference caused by other chemicals in the body. The study reported here represents a first step in this direction, namely the realization of a microfluidic device with integrated silicon photodiode for chemiluminescence detection of glucose. This microflow device uses a chaotic mixing approach to perform enzymatic conversion of glucose, followed by reaction of the hydrogen peroxide produced with luminol to produce light at 425 nm. The chemiluminescence reaction is catalyzed by horseradish peroxidase in the presence of iodophenol. The performance of the fabricated chip was characterized to establish optimal reaction conditions with respect to sample and reagent flow rates, pH, and concentrations. A linear calibration curve was obtained for current response as a function of glucose concentration in the clinically relevant range between 2 and 10 mM, with a sensitivity of 39 pA/mM (R = 0.9963, one device, n = 3) and a limit of detection of 230 μM (S/N = 3).  相似文献   

10.
A novel concept for a dual-enzyme-based microbiosensor for the detection of adenosine-5′-triphosphate (ATP) was developed. The employed enzymes pyrroloquinoline quinone-dependent glucose dehydrogenase (PQQ-GDH) and hexokinase were entrapped, using pH-shift-induced precipitation of electrodeposition paint (EDP) at platinum microelectrodes (diameter of 25 µm). PQQ-GDH is known showing a superior activity for glucose conversion at the relevant conditions (low oxygen concentration) for ATP detection in targeted biomedical studies. For immobilizing the two enzymes PQQ-GDH and hexokinase, the deposition conditions of EDP Resydrol AY498w/35WA were adapted to ensure high immobilization rates. Prior to ATP sensing, the conversion of glucose, which is the co-substrate for both enzymatic reactions, was optimized. Optimization was targeted towards ATP measurements in biomedical environments by optimizing the PQQ-GDH sensor for glucose. Therefore, different mediators were tested regarding their electron transfer rate and their compatibility with the enzyme: free-diffusing N-methylphenazonium methyl sulfate (PMS) and ferrocenemethanol, and an immobilized chromium hexacyanoferrate layer at platinum electrode. Free-diffusing ferrocenemethanol reveals high sensitivity towards glucose of 1.5?±?0.4 nA/mM. In a next step, hexokinase was co-entrapped in the polymer film resulting in a sensitivity of up to 290 pA/µM.  相似文献   

11.
Hydrogel biosensors usually suffer from a slow response, which severely hinders their practical applications. Here a new optical glucose biosensor was designed, using glucose-sensitive hydrogel films as both glucose-sensing material and Fabry-Perot cavity. The film was fabricated by layer-by-layer assembly from partially oxidized dextran (PO-Dex), chitosan, and glucose oxidase (GOD). The film responds to glucose because the incorporated GOD converts glucose to gluconic acid, and thus lowers the local pH in the film, and, in turn, triggers the pH-sensitive film to swell. The glucose-induced swelling causes a shift of Fabry?Perot fringes on the reflection spectra of the film, from which the glucose concentration can be reported. The new sensor works well under physiological conditions. Potential interferents, such as diols for phenylboronic acid-based sensors and electroactive compounds for electrochemical sensors, do not influence the new sensor. The sensor can respond reversibly over a wide range of glucose concentration. Particularly, it responds linearly within the clinically relevant glucose range (0–20 mM). More importantly, because the film is very thin, the new sensor can respond quickly, making it potential for real-time, continuous glucose monitoring.  相似文献   

12.
Type 2 diabetes mellitus (T2DM) is linked to insulin resistance and a loss of insulin sensitivity, leading to millions of deaths worldwide each year. T2DM is caused by reduced uptake of glucose facilitated by glucose transporter 4 (GLUT4) in muscle and adipose tissue due to decreased intracellular translocation of GLUT4-containing vesicles to the plasma membrane. To treat T2DM, novel medications are required. Through a fluorescence microscopy-based high-content screen, we tested more than 600 plant extracts for their potential to induce GLUT4 translocation in the absence of insulin. The primary screen in CHO-K1 cells resulted in 30 positive hits, which were further investigated in HeLa and 3T3-L1 cells. In addition, full plasma membrane insertion was examined by immunostaining of the first extracellular loop of GLUT4. The application of appropriate inhibitors identified PI3 kinase as the most important signal transduction target relevant for GLUT4 translocation. Finally, from the most effective hits in vitro, four extracts effectively reduced blood glucose levels in chicken embryos (in ovo), indicating their applicability as antidiabetic pharmaceuticals or nutraceuticals.  相似文献   

13.
In this study, we described a point-of-care sensing protocol for rapid and sensitive detection of Microcystin-LR (MC-LR) in water by personal glucose meter. The POCT method possessed good reproducibility, selectivity, and stability, which may have potential for many other on-site detection applications.  相似文献   

14.
A nonenzymatic electrochemical method is described for the detection of glucose by using gold (Au) nanoparticles self-assembled on a three-dimensional (3D) silicate network obtained by using sol-gel processes. The nanosized Au particles have been self-assembled on the thiol tail groups of the silicate network and enlarged by hydroxylamine. The Au nanoparticles efficiently catalyze the oxidation of glucose at less-positive potential (0.16 V) in phosphate buffer solution (pH 9.2) in the absence of any enzymes or redox mediators. The Au nanoparticle-modified transducer (MPTS-nAuE) was successfully used for the amperometric sensing of glucose and it showed excellent sensitivity with a detection limit of 50 nM. The common interfering agent ascorbate (AA) does not interfere with the detection of glucose. The MPTS-nAuE transducer showed individual voltammetric responses for glucose and AA. This transducer responded linearly to glucose in the range of 0-8 mM and the sensitivity of the transducer was found to be 0.179 nA cm(-2) nM(-1). Excellent reproducibility, and long-term storage and operational stability was observed for this transducer.  相似文献   

15.
LBL分子沉积法制备葡萄糖氧化酶电极   总被引:1,自引:0,他引:1  
采用以静电力为主的逐层分子交替沉积技术制备葡萄糖氧化酶(GOD)电极.通过带有正电荷的聚二甲基二烯丙基铵盐酸盐(PDDA)和带有负电荷的GOD交替沉积在修饰有3-巯基-1-丙基磺酸钠(MPS)的金电极表面.以甲酸二茂铁为电子媒介体,用循环伏安法检测GOD电极对葡萄糖的响应.结果表明,当GOD电极组装层数小于4时,电流响应随着层数的增加而增大,超过4层时电流响应减小.其中4层GOD修饰电极的线性范围为0.55~6.63 mmol•L-1,当pH为7.0时,响应最大.同时电极的检测重现性能良好,相对标准偏差为2.4%.  相似文献   

16.
A continuous amperometric glucose monitoring system is presented. All analytically relevant units are integrated on a microchip (microreactor, control electrode, glucose oxidase based sensor electrode, reference electrode, counter electrode). The scavenging electrochemical microreactor pre-oxidises all interfering compounds enabling a reliable glucose determination. The reliability of the microreactor is demonstrated with the most important antioxidants, ascorbic and uric acids. The glucose sensor system operates at volumetric flow rates of common body interfaces (e.g. microdialysis, microperfusion).  相似文献   

17.
Graphene's extraordinary physical properties and its planar geometry make it an ideal candidate for a wide array of applications, many of which require controlled chemical modification and the spatial organization of molecules on its surface. In particular, the ability to functionalize and micropattern graphene with proteins is relevant to bioscience applications such as biomolecular sensors, single-cell sensors, and tissue engineering. We report a general strategy for the noncovalent chemical modification of epitaxial graphene for protein immobilization and micropatterning. We show that bifunctional molecule pyrenebutanoic acid-succinimidyl ester (PYR-NHS), composed of the hydrophobic pyrene and the reactive succinimide ester group, binds to graphene noncovalently but irreversibly. We investigate whether the chemical treatment perturbs the electronic band structure of graphene using X-ray photoemission (XPS) and Raman spectroscopy. Our results show that the sp(2) hybridization remains intact and that the π band maintains its characteristic Lorentzian shape in the Raman spectra. The modified graphene surfaces, which bind specifically to amines in proteins, are micropatterned with arrays of fluorescently labeled proteins that are relevant to glucose sensors (glucose oxidase) and cell sensor and tissue engineering applications (laminin).  相似文献   

18.
In this work, the development of a robust spectroscopic procedure for determining, simultaneously and non-destructively, relevant quality parameters of processed tomato products (total and soluble solids, total acidity, total sugars, glucose and fructose), is described. Samples of tomato concentrate products with total solids content ranging from 6.9 to 35.9% were collected from Latin America, the US and Europe and NIR spectra were acquired in the 4000-10,000 cm(-1) region. The original spectra were pre-processed by mean-smoothing or by Fourier filter, followed by multiplicative signal correction (MSC) or derivatives. Partial least squares (PLS2 and PLS1) models were built and their predictive abilities were compared through the RMSEP of external validation. The PLS2 regression had better predictive abilities for four out of the six properties under study, namely total solids, total sugars, glucose and fructose. Besides, the model was less complex than the PLS1 models in the sense that only four factors were demanded whilst from 4 to 11 factors were necessary for building the PLS1 models. The standard error of prediction (SEP%) of the PLS2 model for each property was: total solids, 2.67; soluble solids, 1.14; total acidity, 9.60; total sugar, 18.69; glucose, 11.60; and fructose, 13.45.  相似文献   

19.
Nie Z  Deiss F  Liu X  Akbulut O  Whitesides GM 《Lab on a chip》2010,10(22):3163-3169
The combination of simple Electrochemical Micro-Paper-based Analytical Devices (EμPADs) with commercially available glucometers allows rapid, quantitative electrochemical analysis of a number of compounds relevant to human health (e.g., glucose, cholesterol, lactate, and alcohol) in blood or urine.  相似文献   

20.
A novel glucose biosensor was constructed via direct covalent attachment of glucose oxidase onto epoxy group containing polymeric electron transfer mediator, Poly(glycidyl methacrylate‐co‐vinylferrocene). A copolymer of glycidyl methacrylate (GMA) and vinylferrocene (VFc) with different molar ratios has been prepared by free radical copolymerization. These copolymers have been utilized as polymeric mediators for amperometric glucose sensing. The catalytic electrochemistry of the enzyme electrode with the copolymer was investigated. Copolymer acts as an electron transfer mediator between the redox center of Glucose oxidase (GOx) and the electrode. The stability, reusability, pH and temperature response of the biosensor as well as its kinetic parameter have also been studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号