首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New optically active dendrimers (1-3) containing rigid and cross-conjugated units have been synthesized and characterized. UV and fluorescence spectroscopic studies demonstrate that the energy harvested by the periphery of the dendrimers can be efficiently transferred to the core. The fluorescence of the dendrimers can be quenched by amino alcohols (4-6) both efficiently and enantioselectively. The energy migration and light harvesting effects of the dendrimers make the higher generation dendrimers more sensitive fluorescent quencher than the lower ones.  相似文献   

2.
A dramatic enhancement in fluorescence intensity from 1,1'-bi-2-naphthol (BINOL) to dendritic phenyleneethynylenes containing the BINOL core was observed. The strong fluorescence of the dendrimers allows a very small amount of the chiral materials to be used for sensing. The light harvesting antennas of the dendrimer funnel energy to the center BINOL unit, whose hydroxyl groups upon interaction with a quencher molecule lead to fluorescence quenching. This mechanism makes the dendrimers have much more sensitive fluorescence responses than corresponding small molecule sensors. The fluorescence of these dendrimers can be enantioselectively quenched by chiral amino alcohols. It is observed that the fluorescence lifetime of the generation two dendrimer does not change in the presence of various concentrations of 2-amino-3-phenyl-1-propanol. This demonstrates that the fluorescence quenching is entirely due to static quenching. Thus, formation of nonfluorescent ground-state hydrogen-bond complexes between the dendrimers and amino alcohols is proposed to account for the fluorescent quenching. A linear relationship has been established between the Stern-V?lmer constant of the generation two dendrimer and the enantiomeric composition of 2-amino-3-phenyl-1-propanol. Such enantioselective fluorescent sensors may allow a rapid determination of the enantiomeric composition of chiral molecules and are potentially useful in the combinatorial search of asymmetric catalysts and reagents.  相似文献   

3.
The synthesis and characterization of two chiral dendrimers, 1 and 2 , in their racemic form is presented. The chirality is based on the construction of four constitutionally different, but chemically resembling, branches to an achiral core. A multi-substituted pentaerythritol derivative is used as core and Fréchet's aromatic-ether dendritic wedges of different generation are used as branches. The synthetic approach makes use of the consecutive attachment of the four branches by selective deprotection of the core. Both chiral dendrimers of different size have been synthesized from the same precursor. 1H-NMR Spectroscopy indicates an overall chiral shape for 1 , while for both 1 and 2 stratified structures are observed. Several attempts to resolve both dendrimers have not been successful so far, giving rise to a discussion on the degree of chirality in these dendrimers of nanometer dimensions.  相似文献   

4.
Nonconjugated dendrimers, which are capable of funneling energy from the periphery to the core followed by a charge-transfer process from the core to the periphery, have been synthesized. The energy and electron donors involve a diarylaminopyrene unit and are incorporated at the periphery of these dendrimers. The energy and electron acceptor is at the core of the dendrimer, which involves a chromophore based on a benzthiadiazole moiety. The backbone of the dendrimers is benzyl ether based. A direct electron-transfer quenching of the excited state of the periphery or a sequential energy transfer-electron-transfer pathway are the two limiting mechanisms of the observed photophysical properties. We find that the latter mechanism is prevalent in these dendrimers. The energy transfer occurs on a picosecond time scale, while the charge-transfer process occurs on a nanosecond time scale. The lifetime of the charge separated species was found to be in the range of microseconds. Energy transfer efficiencies ranging from 80% to 90% were determined using both steady-state and time-resolved measurements, while charge-transfer efficiencies ranging from 70% to 80% were deduced from fluorescence quenching of the core chromophore. The dependence of the energy and charge-transfer processes on dendrimer generation is analyzed in terms of the backfolding of the flexible benzyl ether backbone, which leads to a weaker dependence of the energy and charge-transfer efficiencies on dendrimer size than would be expected for a rigid system.  相似文献   

5.
在树枝(dendron)上引入特定的功能单元,将多个具有特定功能团(咔唑)连接起来.形成功能化树枝状周边分子团簇,然后将它们分别与核心色素萘酰亚胺相连接,合成新型周边树枝状功能化的有机发光材料(共三代)。稳态荧光研究发现周边功能团吸收的能量能以较高的效率传递给中心核色素萘酰亚胺。其传输效率与化合物的树枝代数密切相关,具有特殊的光采集、光放大效应。瞬态荧光研究表明树枝化合物中的咔唑单元都呈双指数衰减特征,其中较短荧光寿命成分是咔唑和萘酰亚胺单元之间的相互作用。  相似文献   

6.
Two series of phosphorus dendrimers functionalized by maleimide derivatives are synthesized, as well as three new monomeric maleimide derivatives, of which two are characterized by X-ray diffraction. The first series of phosphorus dendrimers possesses maleimide derivatives as end groups (6-48, from generation 0 to generation 3). The second series of dendrimers possesses a single copy of the same maleimide derivative linked "off-center" to a cyclotriphosphazene core, leading to dissymmetrical dendrimers; this series is synthesized from generation 0 to generation 2. The fluorescence properties of both series of dendrimers and of monomers are studied, affording new information. First, the presence of labile hydrogen extinguishes the fluorescence. Second, the grafting of the fluorophore(s) directly to the core affords highly fluorescent compounds. Finally, an original influence of the branches possessing phosphorhydrazone linkages toward the fluorescence properties is shown.  相似文献   

7.
Synthesis of some novel chiral dendrimers containing quinoline as surface group and 1,2,3-triazole as branching unit is described. The chiroptical property exhibits the widening of the torsional angle in the BINOL core as the generation increases. The photophysical properties indicate an increase in the molar extinction coefficient and fluorescence intensity and a decrease in quantum yield and lifetime as the generation of the dendrimer increases.  相似文献   

8.
Dendrimers with 2,5-diarylsilole at the core are readily synthesized by the Ni-catalyzed reaction of 1,1,2,2-tetramethyldisilane and 1,6-diynes having poly(benzyl ether)-dendron units. The dendrimers display, upon excitation of the silole ring, an emission at about 500 nm. The fluorescence quantum yield of the dendrimers increases with increasing the generation of the dendron units. In addition, upon excitation of dendron units in the periphery, the dendrimers also display an emission from the silole ring at the core through the energy transfer from the dendron units to the silole core within the dendrimers.  相似文献   

9.
Cationic water-soluble dendrimers have been prepared by the alkylation of pyridyl groups in polypyridylphenylene dendrimers of the first four generations, and their interaction with a polymethacrylate anion has been studied. The stability of polyelectrolyte complexes in aqueoussaline solutions has been studied by fluorimetric titration with the use of the pyrenyl-tagged polyanion, and it has been shown that the stability of these complexes significantly increases with the dendrimer generation number and the content of hydrophobic phenylene groups. Based on sedimentation analysis and turbidimetric titration, it is inferred that a significant part of charged groups of dendrimers are inaccessible to interaction with the polyanion and that water-soluble nonstoichiometric polyelectrolyte complexes develop in mixtures of higher generation dendrimers. Modeling results of this study may be useful for designing efficient cationic dendrimer carriers of genetic material and hydrophobic physiologically active compounds.  相似文献   

10.
A series of new hybrid, layer-block π-conjugated dendrons and dendrimers with alternating thienylenevinylene and phenylenevinylene units has been prepared by means of an orthogonal and convergent-growth methodology that made use of the Horner-Wadsworth-Emmons (HWE) reaction. The placement of the thiophene and benzene rings can be accurately controlled to afford a large variety of dendritic structures, although access to compounds of high generation proved difficult. The optical properties of the synthesized dendrimers were determined by UV/vis and fluorescence spectroscopy, and the influence of the generation and nature of the core on the behavior of these materials was evaluated.  相似文献   

11.
Different generations of carboxyl-terminated poly(aryl ether) dendrimers bearing a diphenylanthracene core were designed and synthesized. It is interesting to see that not only two-generation dendrimers but also one-generation dendrimers can be fabricated into thin films by self-deposition. Fluorescence spectra indicate that increasing the generation number of a dendrimer can effectively control the quenching of the fluorescence. Moreover, the fluorescence property of the diphenylanthracene core of the dendrimers in a solid film is quite similar to that of one in a solution, which is important for designing light-emitting materials.  相似文献   

12.
We examine the photophysics of a series of molecules consisting of a benzthiadiazole core surrounded by a network of benzyl ether arms terminated by aminopyrene chromophores, which function as both energy and electron donors. Three classes of molecules are studied: dendrimers whose peripheries are fully decorated with aminopyrene donors (F), disubstituted dendrimers whose peripheries contain only two donors (D), and linear analogues in which a pair of benzyl ether arms link two donors to the central core (L). The electronic energy transfer (EET) and charge transfer (CT) rates are determined by fluorescence lifetime measurements on the energy donors and electron acceptors, respectively. In all three types of molecules, the EET time scales as the square root of the generation number G, consistent with the flexible nature of the benzyl ether framework. Transient anisotropy measurements confirm that donor-donor energy hopping does not play a major role in determining the EET times. The CT dynamics occur on the nanosecond time scale and lead to stretched exponential decays, probably due to conformational disorder. Measurements at 100 degrees C confirm that conformational fluctuations play a role in the CT dynamics. The average CT time increases with G in the L and D molecules but decreases for the F dendrimers. This divergent behavior as G increases is attributed to the competing effects of larger donor-acceptor distances (which lengthen the CT time) versus a larger number of donors (which shorten the average CT time). This work illustrates two important points about light-harvesting and charge-separation dendrimers. First, the use of a flexible dendrimer framework can lead to a more favorable scaling of the EET time (and thus the light-harvesting efficiency) with dendrimer size, relative to what would be expected for a fully extended dendrimer. Second, fully decorated dendrimers can compensate for the distance-dependent slowdown in CT rate as G increases by providing additional pathways for the CT reaction to occur.  相似文献   

13.
We have applied the fluorescence upconversion technique to explore the electronic excitation energy transfer in unsymmetrical phenylene ethynylene dendrimers. Steady-state emission spectra show that the energy transfer from the dendrons to the core is highly efficient. Ultrafast time-resolved fluorescence measurements are performed at various excitation wavelengths to explore the possibility of assigning absorption band structures to exciton localizations. We propose a kinetic model to describe the time-resolved data. Independent of the excitation wavelength, a typical rise-time value of 500 fs is measured for the fluorescence in the dendrimer without an energy trap, indicating initial delocalized excitation. While absorption is into delocalized exciton states, emission occurs from localized states. When an energy trap such as perylene is introduced on the dendrimer, varying the excitation wavelength yields different energy-transfer rates, and the excitation energy migrates to the trap through two channels. The interaction energy between the dendrimer backbone and the trap is estimated to be 75 cm(-1). This value is small compared to the vibronic bandwidth of the dendrimer, indicating that the monodendrons and the energy trap are weakly coupled.  相似文献   

14.
We have investigated the spectroscopic and electrochemical behavior of symmetric and unsymmetric first-, second-, and third-generation dendrimers comprising an electron-acceptor 4,4'-bipyridinium core (viologen type) and electron-donor 1,3-dimethyleneoxybenzene (Fréchet-type) dendrons. The quite strong fluorescence of the symmetrically and unsymmetrically disubstituted 1,3-dimethyleneoxybenzene units of the dendrons is completely quenched as a result of donor-acceptor interactions that are also evidenced by a low-energy tail in the absorption spectrum. In dichloromethane solution, the 4,4'-bipyridinium cores of the investigated dendrimers are hosted by a molecular tweezer comprising a naphthalene and four benzene components bridged by four methylene units. Host-guest formation causes the quenching of the tweezer fluorescence. The association constants, as measured from fluorescence and (1)H NMR titration plots, (i) are of the order of 10(4) M(-1), (ii) decrease on increasing dendrimer generation, and (iii) are slightly larger for the unsymmetric than for the symmetric dendrimer of the same generation. The analysis of the complexation-induced shifts of the temperature-dependent (1)H NMR signals of the host and guest protons confirms that the bipyridinium core is positioned inside the tweezer cavity and allows the conclusions that (i) shuttling of the tweezer from one to the other pyridinium ring is fast (DeltaG < 10 kcal/mol), (ii) in the case of the unsymmetric dendrimers, the less substituted pyridinium ring is preferentially complexed in apolar solvents, and (iii) complexation of the 4,4'-bipyridinium core proceeds by clipping for the symmetric dendrimers and by threading in the case of unsymmetric ones. Host-guest formation causes a displacement of the first reduction wave of the 4,4'-bipyridinium unit toward more negative potential values, whereas the second reduction wave is unaffected. These results show that the host-guest complexes between the tweezer and the dendrimers are stabilized by electron donor-acceptor interactions and can be reversibly assembled/disassembled by electrochemical stimulation.  相似文献   

15.
The photochemical properties of a series of newly synthesized dendrimers, 4-6, having a 2-(2'-hydroxyphenyl)benzoxazole (HBO) core, were studied in benzene. The fluorescence quantum yields (Phi(f)) were determined to be 0.022, 0.030, and 0.038 for 4, 5, and 6, respectively, increasing in higher generation dendrimers. With transient absorption spectroscopy, the quantum yields of the isomerization from the (E)-keto form ((1)K(E)*) to the (Z)-keto form ((1)K(Z)) (Phi(E)(-->)(Z)) and those of intersystem crossing (Phi(isc)) can be estimated. Whereas Phi(E)(-->)(Z) values decreased in higher generation dendrimers, Phi(isc) values were almost the same among 4-6. The quantum yields of nonradiative decay (Phi(nr)) increased in higher generation dendrimers. The dendrimer structure also affected the reverse tautomerization process.  相似文献   

16.
PAMAM dendrimers of the zeroth to fifth generation (G0-5) have been peripherally modified with phenyl, naphthyl, pyrenyl, and dansyl chromophores. Their fluorescence behaviors are strongly affected by the dendritic architectures at different generations. These dendrimers modified with hydrophobic chromphores can self-organize into vesicular aggregates at the low generations G0-3 in water. The size and aggregation number of these vesicles decrease with increasing generation from G0 to G3. Critical aggregation concentration determined by fluorescence spectroscopy reveals that these aggregates can be favorably formed in the order of G3 > G2 > G1. In contrast to the vesicles made from traditional amphiphilic compounds, these dendrimer-based vesicles are very adhesive due to the H-bonding interaction and entanglement of dendritic branches located in the outer layer. A large number of multivesicle assemblies, i.e., "twins" and "quins" consisting of two and five vesicles, were clearly identifiable with transmission electron (TEM) and atomic force microscopy. For the dendrimers with peripheral pyrenyl chromophores, triangle-like vesicles were observed in water. The hydrophobic interphase thickness of the vesicular bilayer is ca. 2.0-3.2 nm determined by fluorescence resonance energy transfer methods, which agrees well with the thickness directly observed with TEM.  相似文献   

17.
A new class of pi-conjugated dendrimers G0, G1, and G2 was developed through a double-stage divergent/convergent growth approach, in which 5,5,10,10,15,15-hexahexyltruxene was employed as the node and oligo(thienylethynylene)s (OTEs) with different lengths as the branching moieties. The dendrimers were fully characterized by (1)H and (13)C NMR, elemental analysis, gel permeation chromatography, and MALDI-TOF MS. Also, by using atomic force microscopy, it was observed that dendrimer G2 laid nearly flat on the mica surface as a single molecule. Dynamic light scattering results showed that the molecule retained its relatively flat shape in solution. To our best knowledge, dendrimer G2, with a radius approaching 10 nm and a molecular weight of 27 072 Da, was the largest among reported second generation dendrimers. The energy gradient in G2 was constructed by linking OTEs of increasing effective conjugation lengths from the dendritic rim to the core. The intramolecular energy transfer process was studied using steady-state UV-vis absorption and photoluminescent spectroscopies, as well as time-resolved fluorescence spectroscopy. Our structurally extended dendrimers showed an excellent energy funneling ability (their energy transfer efficiencies were all over 95%). All results demonstrate that these dendrimers are promising candidates as light-harvesting materials for optoelectronic devices.  相似文献   

18.
The first examples of anthracene capped chiral dendrimers derived from a 1,3,5-trisubstituted aromatic core and carbohydrate units in the interior and periphery are described. Excimer formation was evident from the fluorescence spectrum, and both fluorescence and chiroptical properties indicated that the dendrimer does not undergo aggregation in the ground state.  相似文献   

19.
The syntheses of amphiphilic dendrimers based on 3,5-dihydroxybenzyl alcohol containing tri- or tetrafunctional chiral central cores and allyl ester termini are described. Water solubility is imparted to the dendrimers via a palladium-catalyzed deprotection of the peripheral allyl esters. This method affords complete deprotection of the carboxylate surface because, in contrast to the basic hydrolysis of methyl ester termini, the solubility of partially hydrolyzed intermediates is maintained throughout the course of the deprotection, thereby avoiding precipitation during the reaction. Chiroptical analysis indicates that the structure of the dendrimers collapses in water, resulting in an increased steric effect upon the central core that is manifested by lower optical rotatory power. However, contributions to the chiroptical properties from the dendron branch segments were not evident in water or organic media, suggesting that chiral substructures were not developing in the branch segments of the dendrimers. Multiangle light scattering studies revealed that the dendrimers experienced significant aggregation in aqueous media that decreased at higher generations. This behavior could be rationalized by a change in conformational preference from a disklike conformation at low generations to a more globular conformation at higher generations.  相似文献   

20.
We have investigated the fluorescence properties of dendrimers (Gn is the dendrimer generation number) containing four different luminophores, namely terphenyl (T), dansyl (D), stilbenyl (S), and eosin (E). In the case of T, the dendrimers contain a single p-terphenyl fluorescent unit as a core with appended sulfonimide branches of different size and n-octyl chains. In the cases of D and S, multiple fluorescent units are appended in the periphery of poly(propylene amine) dendritic structures. In the case of E, the investigated luminophore is noncovalently linked to the dendritic scaffold, but is encapsulated in cavities of a low luminescent dendrimer. Depending on the photophysical properties of the fluorescent units and the structures of the dendrimers, different mechanisms of fluorescence depolarization have been observed: (i) global rotation for GnT dendrimers; (ii) global rotation and local motions of the dansyl units at the periphery of GnD dendrimers; (iii) energy migration among stylbenyl units in G2S; and (iv) restricted motion when E is encapsulated inside a dendrimer, coupled to energy migration if the dendrimer hosts more than one eosin molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号