首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
《Analytical letters》2012,45(17):2751-2761
Quinoline-appended rhodamine B thiohydrazide based fluorescent probe was designed and applied in fluorescent detections of mercury ions in both aqueous solution and living cells. The signal change of the probe is based on a specific metal ion induced reversible ring-opening mechanism of a rhodamine B thiohydrazide. The probe exhibits a dynamic response concentration range for Hg2+ from 1.0 × 10?8 to 1.0 × 10?5 M with a detection limit of 8.5 × 10?9 M. The fluorescent probe is pH independent in medium condition and exhibits high selectivity over other common metal ions.  相似文献   

2.
A rhodamine-conjugated coumarin (L) was used in designing a selective fluorescence chemosensor for the determination of trace amounts of Cr3+ ions in acetonitrile–water (MeCN/H2O (90:10, %v/v) solutions. The intensity of the fluoresce emission of the chemosensor is intensified upon addition of Cr3+ ions in MeCN/H2O (90:10, %v/v) solutions, due to the formation of a selective 1:1 complex between L and Cr3+ ions. The fluorescence enhancement versus Cr3+ concentration has been found to be linear from 1.0?×?10?7 to 1.8?×?10?5 M and a detection limit of 7.5?×?10?8 M. The proposed fluorescent probe proved to be highly selective towards Cr3+ ions as compared to other common metal ions and could be successfully applied to the determination of Cr3+ concentrations in some water and wastewater samples.  相似文献   

3.
A furan-2-carbonyl chloride modified rhodamine B derivative (RBFC) has been designed and synthesized. The probe RBFC exhibited excellent sensitivity and selectivity for detection of Fe3+ with a 1:1 stoichiometry over other tested metal ions in a MeOH/H2O (1:1, v/v, pH 7.36, HEPES buffer, 1.3?mM) solution. The association constant and the detection limit were calculated to be 7.28?×?103?M?1 and 0.437?μM based on fluorescence titration analysis. Furthermore, the probe RBFC was successfully applied in living cells, and the results indicated that the probe could monitor intracellular Fe3+ in MCF-7 cells.  相似文献   

4.
In this study, we have successfully synthesized a novel coumarin-based dendrons derivative CD and its chemical structure was characterized by 1H NMR, 13C NMR and ESI-HR-MS. The sensor CD showed an obvious “on-off” fluorescence quenching response toward Cu2+ with a maximum quenching efficiency of 99.8%. The CD-Cu2+ complex showed an “off-on” fluorescence enhancement response toward PPi over many competitive anions. The detection limit of the sensor CD was 0.29?×?10?6?M to Cu2+ and 2.39?×?10?9?M to PPi. In addition, the sensor CD showed a 1:1 binding stoichiometry to Cu2+ and the sensor CD-Cu2+ showed a 2:1 binding stoichiometry to PPi in CH3CN/HEPES buffer medium (9:1 v/v, pH?=?7.2). The stable pH range of sensor CD to Cu2+ and CD-Cu2+ to PPi was from 3 to 8.  相似文献   

5.
A novel ion selective carbon paste electrode for Cd2+ ions based on 2,2′-thio-bis[4-methyl(2-amino phenoxy) phenyl ether] (TBMAPPE) as an ionophore was prepared. The carbon paste was made based on a new nano-composite including multi-walled carbon nanotubes (MWCNTs), nanosilica and room-temperature ionic liquid, 1-Butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6). The constructed nano-composite electrode showed better sensitivity, selectivity, response time, response stability and lifetime in comparison with typical Cd2+ carbon paste sensor for the successful determination of Cd2+ ions in water and in waste water samples. The best performance for nano-composite sensor was obtained with an electrode composition of 18% TBMAPPE, 20% BMIM-PF6, 48% graphite powder, 10% MWCNT and 4% nanosilica. The new electrode exhibited a Nernstian response (29.95?±?0.10?mV?decade?1) toward Cd2+ ions in the range of 3.0?×?10?8 to 1.0?×?10?1?mol?L?1 with a detection limit of 7.5?×?10?9?mol?L?1. The potentiometric response of prepared sensor was independent of the pH of test solution in the pH range 3.0 to 5.5. It had a quick response with a response time of about 6?s. The proposed electrode showed fairly good selectivity over some alkali, alkaline earth, transition and heavy metal ions.  相似文献   

6.
A ratiometric fluorescent zinc probe 1 of carboxamidoquinoline with a carboxylic acid group was designed and synthesised. Probe 1 exhibits high selectivity for sensing Zn2+; about a 13-fold increase in fluorescence emission intensity and an 82?nm red-shift of fluorescence emission are observed upon binding Zn2+ in EtOH/H2O (1?:?1, V/V) solution. The ratiometric fluorescence response is attributed to the 1?:?1 complex formation between probe 1 and Zn2+ which has been utilised as the basis for the selective detection of Zn2+. The analytical performance characteristics of the proposed Zn2+-sensitive probe were investigated. The linear response range covers a concentration range of Zn2+ from 2.0?×?10?6 to 5.0?×?10?5?mol?L?1 and the detection limit is 2.7?×?10?7?mol?L?1. The determination of Zn2+ in both tap and river water samples shows satisfactory results.  相似文献   

7.
《Electroanalysis》2004,16(12):1002-1008
Preliminary theoretical studies revealed the selective complexation of bis (2‐mercaptoanil) diacetyl (BMDA) with La3+ over several alkali, alkaline earth and heavy metal ions. Thus, novel PVC‐based membrane (PBM) and coated graphite membrane (CGM) sensors for La(III) based on BMDA were prepared. The electrodes display Nernstian behavior over wide concentration ranges (i.e., 1.0×10?5–1.0×10?1 M for PBM and 1.0×10?6–1.0×10?1 M for CGM). The potential response of sensors was pH independent in the range of 4.0–8.0. The sensors possess satisfactory reproducibility, fast response time (<15 s), and specially excellent discriminating ability for La3+ ions with respect to most of the cations. The membrane sensor was used as an indicator electrode in potentiometric titration of lanthanum ions with EDTA. The coated graphite membrane electrode was applied in determination of fluoride ions in mouth wash preparations.  相似文献   

8.
A novel turn-on rhodamine B-based fluorescent chemosensor (RBCS) was designed and synthesized by reacting N-(rhodamine B)lactam-1,2-ethylenediamine and carbon disulfide. Upon addition of Fe3+ in EtOH/H2O solution (2:1, v/v, HEPES buffer, 0.6?mM, pH 7.20), the RBCS displayed a significant fluorescence enhancement at 582?nm and a dramatic color change from colorless to pink, which can be detected by the naked eye. Significantly, the RBCS exhibited a highly selective and sensitive ability toward Fe3+. The detection limit of the probe was 2.05?×?10?7?M. Job's plot indicated the formation of 1:1 complex between the RBCS and Fe3+. Moreover, the practical use of the RBCS is demonstrated by its application in the detection of Fe3+ in HeLa cells.  相似文献   

9.
A new lawsone-based azo-dye 2-hydroxy-3-((pyridin-2-ylmethyl)diazenyl)naphthalene-1,4-dione (1) was synthesized and applied for sensing of metal ions. Receptor 1 showed selective fluorescent and colorimetric response for the detection of Cu2+ and Fe3+ over other tested metal ions. The fluorescence intensity of 1 was significantly quenched allowing detection of Fe3+ and Cu2+ down to 0.61 and 6.06 μM, respectively. The binding has been established by fluorescence spectroscopic method. Receptor 1 provided a 1?:?1 binding scaffold for recognition of Fe3+ and Cu2+ ions with the association constant of 3.33 × 106 and 3.33 × 105 M?1, respectively. The B3LYP/6-31G/LANL2DZ method was employed for the optimization of 1 and 1·Fe3+ and 1·Cu2+.  相似文献   

10.
This article reports the selective sensing ability of a newly synthesized calix[4]arene Schiff base (C4TSB) derivative. C4TSB exhibited strong turn-off fluorescence affinity for Hg2+ and Au3+. The selective sensing ability of receptor was investigated in the presence of different co-existing competing ions. The limit of detection for Hg2+ and Au3+ was determined as 1.9 × 10?5 and 1.0 × 10?6 M, respectively. Receptor forms 1:1 stoichiometric complex with both metals and their binding constants were calculated as 7.9 × 103 M?1 for Hg2+ and 5.7 × 103 M?1 for Au3+. Complexes were also characterized through FT-IR spectroscopy.  相似文献   

11.
A potentiometric sensor based on the Schiff base 2,2′-(1E,1′E)-(1,1′-binaphthyl-2,2′-diylbis(azan-1-yl-1-ylidene))bis(methan-1-yl-1-ylidene)diphenol was synthesized and tested as an ionophore PVC-based membrane sensor selective towards silver ions (Ag+). Potentiometric testing demonstrated the high affinity of this receptor to silver ions. Seven membranes were fabricated with different compositions, with best performance shown by that with an ionophore composition (w/w) of 1.0?mg, PVC 33.0?mg, 2-nitrophenyl octyl ether 66?mg, and potassium tetrakis(p-chlorophenyl)borate 50?mol% in 1.0?mL tetrahydrofuran. The sensor worked well over a wide range of concentrations (1.0?×?10?2 to 1.0?×?10?6?M Ag+) at pH?6, showing a slope of 60.99?mV/dec with rapid response times of less than 3?s. The sensor also showed good selectivity towards Ag+ in the presence of interfering cations, with the highest selectivity coefficient observed for Hg2+ (2.7). A low detection limit of 3.4?×?10?7?M Ag+ was established.  相似文献   

12.
A new PVC-membrane electrode for Co2+ ions based on N,N′-di(thiazol-2-yl)formimidamide (TF) as membrane carrier has been developed. The electrode resulted in Nernstian response (29.5?±?0.4?mV decade?1) for Co2+ ion over a wide concentration range (2.5?×?10?7 ?1.0?×?10?1?M) with a detection limit of 6.1?×?10?8?M. The sensor has a response time of about 10?s, and can be used for at least 2 months without observing any deviation from the Nernstain response. The electrode revealed good selectivity towards cobalt(II) ion over a wide variety of alkali, alkaline earth, transition, and heavy metal ions and could be used in the pH range 2.0–7.0. The electrode was used for determination of Co2+ in real samples.  相似文献   

13.
A simple highly sensitive and selective turn-on fluorescent chemosensor L based on bis-Schiff-base for Pb2+ ions was synthesized and characterized by spectroscopic techniques. L having high binding affinity towards Pb2+ ions of 2.10 × 104 M?1 selectively detects Pb2+ ions with almost no interference among various competitive ions by a 11-fold fluorescent enhancement in CH3CN/H2O (95:5, v/v) solution over a wide pH range. Moreover, sensor L displayed a lower detection limit of 3.80 × 10?7 M, which is low enough for sensing sub-millimolar concentration of Pb2+ encountered practically.  相似文献   

14.
《Electroanalysis》2004,16(21):1785-1790
Binaphthyl‐based crown ethers incorporating anthraquinone, benzoquinone, and 1,4‐dimethoxybezene have been synthesized and tested for Rb+ selective ionophores in the poly(vinyl chloride) (PVC) membrane. The membrane containing NPOE gave a better Rb+ selectivity than those containing either DOA or BPPA as a plasticizer. The response was linear within the concentration range of 1.0×10?5–1.0×10?1 M and the slope was 54.7±0.5 mV/dec. The detection limit was determined to be 9.0×10?6 M and the optimum pH range of the membrane was 6.0–9.0. The ISE membrane exhibits good selectivity for Rb+ over ammonium, alkali metal, and alkaline earth metal ions. Selectivity coefficients for the other metal ions, log KPot were ?2.5 for Li+, ?2.4 for Na+, ?2.0 for H+, ?1.0 for K+, ?1.2 for Cs+, ?1.6 for NH4+, ?4.5 for Mg2+, ?5.0 for Ca2+,?4.9 for Ba2+. The lifetime of the membrane was about one month.  相似文献   

15.
A novel compound hexa-rhodamine substituted phosphazene (HRP) with six active centers on a cyclotriphosphazene ring was synthesized using the alkyne-azide “click” reaction. The structure of HRP was characterized using spectroscopic techniques. The optical sensor properties of HRP for metal ions were investigated using UV-Vis and Fluorescence spectroscopy. It was determined that HRP is a selective sensor with colorimetric and fluorescent properties for Fe3+ ions. Limit of detection (LOD) of HRP was determined as 6.94?×?10?9 M using fluorescence intensities in the presence of different concentrations of Fe3+ ions. It was determined that HRP-Fe3+ complex has high quantum yield and excellent photostability.  相似文献   

16.
By using a copper‐promoted alkyne–azide cycloaddition reaction, two boron dipyrromethene (BODIPY) derivatives bearing a bis(1,2,3‐triazole)amino receptor at the meso position were prepared and characterized. For the analogue with two terminal triethylene glycol chains, the fluorescence emission at 509 nm responded selectively toward Hg2+ ions, which greatly increased the fluorescence quantum yield from 0.003 to 0.25 as a result of inhibition of the photoinduced electron transfer (PET) process. By introducing two additional rhodamine moieties at the termini, the resulting conjugate could also detect Hg2+ ions in a highly selective manner. Upon excitation at the BODIPY core, the fluorescence emission of rhodamine at 580 nm was observed and the intensity increased substantially upon addition of Hg2+ ions due to inhibition of the PET process followed by highly efficient fluorescence resonance energy transfer (FRET) from the BODIPY core to the rhodamine moieties. The Hg2+‐responsive fluorescence change of these two probes could be easily seen with the naked eye. The binding stoichiometry between the probes and Hg2+ ions in CH3CN was determined to be 1:2 by Job′s plot analysis and 1H NMR titration, and the binding constants were found to be (1.2±0.1)×1011 m ?2 and (1.3±0.3)×1010 m ?2, respectively. The overall results suggest that these two BODIPY derivatives can serve as highly selective fluorescent probes for Hg2+ ions. The rhodamine derivative makes use of a combined PET‐FRET sensing mechanism which can greatly increase the sensitivity of detection.  相似文献   

17.
A new fluorescent probe (TCF-AC) that contains 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran (TCF) skeleton has been developed. Probe TCF-AC exhibits highly selective and sensitive detection toward Pd0 in EtOH/H2O (1:1, v/v, PBS 20?mM, pH?=?7.4) solution with fluorescence “turn on” and colorimetric changes. The Pd0 detection by TCF-AC holds some advantages including good anti-interference ability, a relative large Stokes shift (>100?nm), and a low detection limit (7.05?×?10?7?M). Cell imaging studies demonstrate that TCF-AC is applicable to detect Pd0 in living HeLa cells.  相似文献   

18.
A novel copper(II)-selective electrode based on graphite oxide/imprinted polymer composite was developed for the electrochemical monitoring of copper(II) (Cu2+) ions. The electrode exhibited highly selective potentiometric response to Cu2+ with respect to common alkaline, alkaline earth and heavy metal cations. The composite composition studies indicated that the most suitable composite composition performing the most promising potentiometric properties was 20.0% ionophore (Cu2+-ion imprinted polymer), 10.0% paraffin oil, 5.0% multiwalled carbon nanotubes, and 65.0% graphite oxide. The fabricated electrode exhibited a linear response to Cu2+ over the concentration range of 1.0?×?10??6–1.0?×?10??1?M (correlation coefficient of 0.9998) with a sensitivity of 26.1?±?0.9?mV decade??1. The detection limit of the fabricated electrode was determined to be 4.0?×?10??7?M. The electrode worked well in the pH range of 4.0–8.0. The electrode had stable, reversible and fast potentiometric response (3?s). In addition, the electrode had a lifetime of more than 1 year. The analytical applications of the proposed electrode were performed using as an indicator electrode for the potentiometric titration of Cu2+ with ethylene diamine tetraacetic acid solution and for the determination of Cu2+ of spiked river, dam, and tap water samples. The obtained results for potentiometric titration and water samples were satisfactory.  相似文献   

19.
A new solid contact Zn2+ polyvinylchloride membrane sensor with 2-(2-Hydroxy-1-naphthylazo)-1,3,4 -thiadiazole as an ionophore has been prepared. For the electrode construction, ionic liquids, alkylmethylimidazolium chlorides are used as transducer media and as a lipophilic ionic membrane component. The addition of ionic liquid to the membrane phase was found to reduce membrane resistance and determine the potential of an internal reference Ag/AgCl electrode. The electrode with the membrane composition: ionophore: PVC: o-NPOE: ionic liquid in the percentage ratio of (wt.) 1:30:66:3, respectively, exhibited the best performance, having a slope of 29.8 mV decade?1 in the concentration range 3×10?7–1×10?1 M. The detection limit is 6.9×10?8 M. It has a fast response time of 5–7 s and exhibits stable and reproducible potential. It has a fast response time of 5–7 s and exhibits stable and reproducible potential, which does not depend on pH in the range 3.8–8.0. The proposed sensor shows a good and satisfactory selectivity towards Zn2+ ion in comparison with other cations including alkali, alkaline earth, transition and heavy metal ions. It was successfully applied for direct determination of zinc ions in tap water and as an indicator electrode in potentiometric titration of Zn2+ ions with EDTA.   相似文献   

20.
The selective and efficient surfactant assisted transport of Pb2+ ions using a bulk liquid membrane composed of dicyclohexyl-18-crown-6, as a highly selective carrier, in chloroform solution is reported. In the presence of 6.0 × 10?2 M P2O7 4? ions and 10?3 M sodium dodecylsulfate, as suitable stripping agent and membrane/receiving phase interface modifier, respectively, in the receiving phase and 2.4 × 10?3 M picric acid, as a counter ion in the source phase, the amount of lead transported across the liquid membrane after 5 h is 100.0 ± 1.1. The designed transport system was successfully applied to the removal of lead from sea water and blood serum samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号