首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyvinyl chloride (PVC), polypropylene (PP), polyethylene (PE), and stainless steel (SS) are commonly used in medicine and food production technologies. During contact with microorganisms on the surface of these materials, a microbial biofilm is formed. The biofilm structure is difficult to remove and promotes the development of pathogenic bacteria. For this reason, the inhibition of biofilm formation in medical and food production environments is very important. For this purpose, five naturally occurring compounds were used for antimicrobial screening tests. The two with the best antimicrobial properties were chosen to inhibit the biofilm formation of Staphylococcus aureus and Pseudomonas aeruginosa. After 3 days of exposure, thymol reduced the amount of biofilm of Pseudomonas aeruginosa within the range of 70–77% and 52–75% for Staphylococcus aureus. Carvacrol inhibited the formation of biofilms by up to 74–88% for Pseudomonas aeruginosa and up to 86–100% for Staphylococcus aureus. Those phenols decreased the enzyme activity of the biofilm by up to 40–100%. After 10 days of exposure to thymol, biofilm formation was reduced by 80–100% for Pseudomonas aeruginosa and by about 79–100% for Staphylococcus aureus. Carvacrol reduced the amount of biofilm by up to 91–100% for Pseudomonas aeruginosa and up to 95–100% for Staphylococcus aureus.  相似文献   

2.
This study investigates the modification of commercial cellulose acetate microfiltration membranes by supercritical solvent impregnation with thymol to provide them with antibacterial properties. The impregnation process was conducted in a batch mode, and the effect of pressure and processing time on thymol loading was followed. The impact of the modification on the membrane’s microstructure was analyzed using scanning electron and ion-beam microscopy, and membranes’ functionality was tested in a cross-flow filtration system. The antibiofilm properties of the obtained materials were studied against Staphyloccocus aureus and Pseudomonas aeruginosa, while membranes’ blocking in contact with bacteria was examined for S. aureus and Escherichia coli. The results revealed a fast impregnation process with high thymol loadings achievable after just 0.5 h at 15 MPa and 20 MPa. The presence of 20% of thymol provided strong antibiofilm properties against the tested strains without affecting the membrane’s functionality. The study showed that these strong antibacterial properties could be implemented to the commercial membranes’ defined polymeric structure in a short and environmentally friendly process.  相似文献   

3.
Intrinsic hydrophobicity is the reason for efficient bacterial settlement and biofilm growth on silicone materials. Those unwelcomed phenomena may play an important role in pathogen transmission. We have proposed an approach towards the development of new anti-biofilm strategies that resulted in novel antimicrobial hydrophobic silicones. Those functionalized polysiloxanes grafted with side 2-(carboxymethylthioethyl)-, 2-(n-propylamidomethylthioethyl)- and 2-(mercaptoethylamidomethylthioethyl)- groups showed a wide range of antimicrobial properties towards selected strains of bacteria (reference strains Staphylococcus aureus, Escherichia coli and water-borne isolates Agrobacterium tumefaciens, Aeromonas hydrophila), fungi (Aureobasidium pullulans) and algae (Chlorella vulgaris), which makes them valuable antibacterial and antibiofilm agents. Tested microorganisms showed various levels of biofilm formation, but particularly effective antibiofilm activity was demonstrated for bacterial isolate A. hydrophila with high adhesion abilities. In the case of modified surfaces, the relative coefficient of adhesion for this strain was 18 times lower in comparison to the control glass sample.  相似文献   

4.
In situ polymerised thin polyaniline (PANI) films produced on polystyrene dishes were tested for their antibacterial activity with respect to Escherichia coli and Staphylococcus aureus, representing both gram-positive and gram-negative bacteria. PANI films were subsequently used for the reduction of silver ions to metallic Ag. PANI salt and base in original forms and after the deposition of Ag were studied. PANI salt showed a significant antibacterial effect against both bacteria strains while the efficacy of neat PANI base was only marginal. After the Ag deposition, the PANI base exhibited different levels of antibacterial effect depending on the type of the bacterial strain; the growth of gram-positive Staphylococcus aureus was inhibited depending on the Ag concentration on the film, while Escherichia coli remained uninfluenced. Efficacy of the PANI salt with deposited Ag against both bacteria strains was comparable with that of PANI alone and was not affected by the Ag concentration. The results show that Ag deposition can be a suitable method for the preparation of PANI base films with improved antibacterial properties.  相似文献   

5.
Poly(ricinoleic acid) (PRA), coming from the self-polycondensation of ricinoleic acid (RA), which derives from castor oil, is a very interesting polymer because of its intrinsic antimicrobial activity. However, its mechanical properties are insufficient for whatever application, thus copolymerization is required. In this work, two polyesters based on 1,3 propanediol (PD), such as poly(propylene terephthalate) (PPT) and poly(propylene isophthalate) (PPI), were chosen to prepare random copolyesters containing ricinoleate units. Different content of RA have been tested, such as 10 and 25 mol% respect to the comonomer (terephthalic or isophthalic dimethylester), to evaluate the lowest composition able to confer antibacterial activity. The materials were tested against Staphylococcus aureus and Escherichia coli, and 25 mol% of RA unit resulted to impart antimicrobial activity. Furthermore, thermal properties (DSC and TGA) as well as the elastomeric response of films were investigated. The copolymer PPI/PRA containing 10 mol% of RA presents very high elongation at break, around 1300%. Therefore, by tuning the RA amount it is possible to obtain outstanding elastomeric or antibacterial materials, suitable for textiles and/or film engineering applications.  相似文献   

6.
There has been a growing interest in developing antibacterial polymeric materials. The logical consequence following development of a new material is optimisation of its processing conditions and investigation of the influence of processing parameters on functionality of a given material. The present work deals with investigation of the effect of preparation temperature on the mechanical and antibacterial properties of polymer films based on poly(vinyl alcohol) (PVA) and silver nitrate (0, 1, 3, 5, 7, 9 wt.% silver content). The mechanical properties of the films prepared at various temperatures (25, 35, 50, 60, 75 °C) were characterized by using stress-strain analysis. Antibacterial properties were determined by using an agar diffusion test and a dilution and spread plate technique against both Gram positive (Staphylococcus aureus) and Gram negative (Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumoniae). The results show significant effect of the elevated temperature on the samples properties.  相似文献   

7.
Due to their richness of bioactive substances, rose hips are a valuable raw material for obtaining extracts with potential antimicrobial activity. The aim of the study was to determine the antagonistic potential of whole pseudo-fruit and flesh extracts of three Rosa sp. varieties against Staphylococcus spp. bacteria isolated as food contaminants. The biological material in this study consisted of seven strains of bacteria from the genus Staphylococcus. Two strains—Staphylococcus aureus ATCC 25923 and Staphylococcus epidermidis DSMZ 3270—were used as reference strains. The other five strains were food-derived isolates—S. epidermidis A5, S. xylosus M5, S. haemolyticus M6, S. capitis KR6, and S. warneri KR2A. The material was the pseudo-fruits of Rosa canina, Rosa pomifera Karpatia, and Rosa rugosa. The polyphenols were extracted from the fleshy part and the whole pseudo-fruit for all rose varieties. The tested preparations differed significantly in their polyphenol composition. The sum of polyphenols ranged from 28 862 to 35 358 mg/100 g of lyophilisate. The main groups of polyphenols found in the preparations were flavanols and ellagitannins. All of the tested extracts inhibited the growth of staphylococci at a concentration of 500 mg/mL. Rosa rugosa fruit extract showed the strongest antimicrobial properties among the studied extracts. For all the strains, the growth inhibition had a diameter of 20.3–29.0 mm. Moreover, six out of the seven tested strains showed the highest inhibition with the use of this extract. The MIC of rose extracts was in the range of 3.125–500 mg/mL and was strictly dependent on the bacterial species, the species of the rose, and the part of the fruit from which the extract was obtained. Correlations were assessed between the main groups of polyphenols in the extracts and their inhibition of bacterial growth. In the case of pseudo-fruit extracts, the inhibitory effect on bacterial growth positively correlated with the content of ellagitannins, and this effect was observed for almost all the tested strains. The results presented herein follow the current trend of minimising the use of chemical preservatives in food; from this point of view, rose extracts are very promising.  相似文献   

8.
Natural materials are gaining popularity in wound healing and food applications, and they have the potential to alleviate the major environmental problems generated via traditional materials. Biomaterials based on Chitosan incorporated with natural products (Ginger, Curcumin, and Cinnamon) have been fabricated by solvent casting method. The antimicrobial characterization of the prepared samples were also investigated using in vitro antimicrobial studies using Gram-positive microorganism [Micrococcus luteus, Staphylococcus aureus, and Staphylococcus epidermidis], Gram-negative microorganism [Pseudomonas aeruginosa], and pathogenic [Candida albicans]. XRD patterns confirmed the complexation between chitosan and other natural products and this indicate the change in structural of chitosan. The shifting and disappearing of bands in FTIR-ATR and changing in fingerprints in FTIR spectra indicate the homogeneity and interaction between chitosan and the other. Optical properties such as absorption, absorption coefficient, Urbach tail and band gap calculation confirmed that Ginger, Curcumin and Cinnamon interact with chitosan and induces localized state between valence and conduction band. The mechanical properties also studied and revealed that Chitosan/Ginger has the best mechanical characteristic compared the other samples. In addition, the shifting toward higher wavelength for chitosan/Ginger may be utilized to generate electron–hole pairs, which is important for antimicrobial activities, and this confirmed from antimicrobial analysis that Chitosan/Ginger give high antimicrobial activity toward Gram-positive microorganism and suggest it for wound dressing application.  相似文献   

9.
Cystatin 11 (CST11) belongs to the cystatin type 2 family of cysteine protease inhibitors and exhibits antimicrobial activity in vitro. In this study, we describe the expression and purification of recombinant porcine CST11 in the Pichia pastoris system. We then assess its antimicrobial activity against Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis, and Bacillus subtilis by liquid growth inhibition assay. Kinetic studies indicate that the recombinant porcine CST11 has high potency against E. coli and S. aureus. Scanning electronic microscope analysis showed that CST11 might be targeting the bacterial membrane and, thus, could potentially be developed as a therapeutic agent for inhibiting microbe infection without the risk of antibiotic resistance.  相似文献   

10.
Biopolymers and biopreservatives produced by microorganisms play an essential role in food technology. Polyhydroxyalkanoates and bacteriocins produced by bacteria are promising components to safeguard the environment and for food preservation applications. Polyhydroxybutyrate (PHB)-based antimicrobial films were prepared incorporating eugenol, from 10 to 200 μg/g of PHB. The films were evaluated for antimicrobial activity against foodborne pathogens, spoilage bacteria, and fungi such as Staphylococcus aureus, Escherichia coli, Salmonella typhimurium, Bacillus cereus, Aspergillus flavus, Aspergillus niger, Penicillium sp., and Rhizopus sp. The synergistic antimicrobial activity of the films in the presence of crude pediocin was also investigated. The broth system containing pediocin (soluble form) as well as antimicrobial PHB film demonstrated an extended lag phase and a significant growth reduction at the end of 24 h against the bacteria. Crude pediocin alone could not elicit antifungal activity, while inhibition of growth and sporulation were observed in the presence of antimicrobial PHB film containing eugenol (80 μg/g) until 7 days in the case of molds, i.e., A. niger, A. flavus, Penicillium sp., and Rhizopus sp. in potato dextrose broth. In the present study, we identified that use of pediocin containing broth in conjunction with eugenol incorporated PHB film could function in synergized form, providing effective hurdle toward food contaminating microorganisms. Furthermore, tensile strength, percent crystallinity, melting point, percent elongation to break, glass transition temperature, and seal strength of the PHB film with and without eugenol incorporation were investigated. The migration of eugenol on exposure to different liquid food simulants was also analyzed using Fourier transform infrared spectroscopy. The study is expected to provide applications for pediocin in conjunction with eugenol containing PHB film to enhance the shelf life of foods in the food industry.  相似文献   

11.
Antimicrobial polymers have been widely reported to exert strong biocidal effects against bacteria. In contrast with antimicrobial polymers with aliphatic ammonium groups, polymers with anilinium groups have been rarely studied and applied as biocidal materials. In this study, a representative polymer with aniline side functional groups, poly(N,N‐dimethylaminophenylene methacrylamide) (PDMAPMA), was explored as a novel antimicrobial polymer. PDMAPMA was synthesized and its physicochemical properties evaluated. The methyl iodide‐quaternized polymer was tested against the Gram‐positive Staphylococcus aureus, with a minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of 16–32 and 64–128 μg mL?1, respectively. Against the Gram‐negative Escherichia coli, the MIC and MBC were both 64–128 μg mL?1. To broaden the range of applications, PDMAPMA was coated on substrates via crosslinking to endow the surface with contact‐kill functionality. The effect of charge density of the coatings on the antimicrobial behavior was then investigated, and stronger biocidal performance was observed for films with higher charge density. This study of the biocidal behavior of PDMAPMA both in solution and as coatings is expected to broaden the application of polymers containing aniline side groups and provide more information on the antimicrobial behavior of such materials. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1908–1921  相似文献   

12.
Globally there are a larger number of strains of microorganisms resistant to multiple drugs mainly due to misuse and indiscriminate, resulting in increased morbidity, costs inherent benefits of health care, as well as mortality rates for infections. As a result of this a large number of researches have been conducted emphasizing the antimicrobial properties of plant products. In this study, the ethanol extract and hexane fraction of Dalbergia ecastophyllum (L.) Taub. (Leguminosae) have been used to evaluate the antibacterial and antifungal activity and for modulating the resistance of antimicrobials against bacterial strains of Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans and fungal strains of Candida krusei, Candida tropicalis. The antibacterial and modulatory activity was determined by microdilution. Inhibition of the growth of bacteria and fungi tested extract was ?1024. The activity was enhanced when aminoglycosides were associated with sub-inhibitory concentrations of the ethanol extract and hexane fraction of Dalbergia ecastophyllum. Therefore, it is suggested that the ethanol extract and hexane fraction of Dalbergia ecastophyllum (L.) Taub. (Leguminosae) can be used as a source of natural products with a view to changing the resistance of these microorganisms to antimicrobials.  相似文献   

13.
Lysine-rich peptide, designated as KABT-AMP, was designed and synthesized to supersede the irrational use of chemical antibiotics as standard therapy. KABT-AMP is a 22-amino acid helical cationic peptide (+10) and amphipathic in nature. The antimicrobial kinetics of the peptide was ascertained in the representative strains of gram-positive, gram-negative, and fungal strains, viz., Staphylococcus aureus MTCC 2940, Escherichia coli MTCC 2939, and Candida albicans MTCC 227, respectively. KABT-AMP was synthesized by solid-phase synthesis and purified using reverse-phase high-performance liquid chromatography which resulted in >95 % purity, and matrix-assisted laser desorption/ionization time of flight revealed the mass of the peptide to be 2.8 kDa. KABT-AMP showed significant broad-spectrum antimicrobial activity against the bacterial and fungal strains analyzed in the present study with survivability of 30.8, 30.6, and 31.7 % in E. coli, S. aureus, and C. albicans, respectively, at 6 h. KABT-AMP also demonstrated antibiofilm activity against the tested biofilm forming clinical isolate, Candida tropicalis. The putative membranolytic activity of the peptide was substantiated by electron microscopic analysis. Results reveal that KABT-AMP will exhibit noteworthy antimicrobial activity against multidrug-resistant bacteria and fungus at micromolar concentrations with minimal cytotoxicity and thus could be conceived for biomedical application.  相似文献   

14.
The surfactant and antimicrobial activities of thiol and disulfide derivatives containing a quaternary ammonium group bearing variable perfluorinated carbon chains via an amide connector between the sulfur and nitrogen atoms were evaluated with the future aim to be grafted on metal surfaces for obtaining contact-active and non-adhesive auto-biocidal surfaces. Their biostatic and bactericidal activities against four microbial strains (Pseudomonas aeruginosa, Staphylococcus aureus, Aspergillus niger and Candida albicans) were measured. The presence of the thiol, disulfide and amide functions in these surfactants were discussed in relation with antimicrobial activity along with the influence of the length of fluorinated chains in order to determine which molecular parameters are ‘critical’ for biological activity.  相似文献   

15.
The aim of this study was to evaluate the in vitro antioxidant and antimicrobial properties of the natural cyclic hydroxamic acid: 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA). Antioxidant activity of the isolated DIMBOA was examined using DPPH, FRAP and ABTS tests. It was found that DIMBOA exhibits a potent free-radical scavenging activity and a weaker iron (III) ions reducing activity. Antimicrobial activity against selected G(+), G(–) bacterial strains and against yeasts-like reference strains of fungi was investigated using disk-diffusion method. It has been shown that DIMBOA possess growth inhibitory properties against many strains of studied bacteria and fungi, such as Staphylococcus aureus, Escherichia coli as well as against Saccharomyces cerevisiae.  相似文献   

16.
Nowadays, products of natural origin with health-promoting properties are increasingly more common. Research shows that fruit vinegars can be a source of compounds with antioxidant activity. Research on the total antioxidant capacity, total phenolic content, and antimicrobial properties against Staphylococcus aureus, Escherichia coli, and Candida albicans of grape vinegars were conducted. Moreover, gas chromatography was used to measure acetic acid content in the vinegars. The research material consisted of vinegars produced from five different grape varieties. For each variety, two variants were prepared: with and without the addition of sugar in the fermentation process. The highest antimicrobial activity against all micro-organisms was observed in vinegar produced from Solaris grapes with added sugar. The highest polyphenol content was observed in vinegar produced from the Prior grape variety with added sugar and the highest total antioxidant capacity is the Johanniter grape variety with added sugar. The vinegars examined in this study differed, depending on grape variety, in terms of antimicrobial properties, antioxidant capacity, total phenolic content, as well as acetic acid content. Sugar addition caused significant differences in the antioxidant capacity of vinegar samples.  相似文献   

17.
This study evaluated the adoption of copper nanoparticles (CuNPs) as an antimicrobial agent in thermoplastic elastomer compounds (TPEs) based on styrene-(ethylene-butylene)-styrene triblock copolymer (SEBS) and polypropylene (PP) for use in the fabrication of automotive air-conditioning systems. The nanocompounds were prepared using a co-rotating double screw extruder and CuNPs were pre-dispersed in polypropylene at weight proportions of 0%, 0.6% and 1.0%. The physical (density), mechanical (tensile and hardness), thermal (differential scanning calorimetry and thermogravimetry) and antimicrobial properties were evaluated on injection molded plates. The antimicrobial properties were evaluated for the bacteria Staphylococcus aureus and Escherichia coli and fungal species commonly found in automotive air conditioners. The results from antibacterial tests showed a reduction of 99.9% in counts of both bacteria tested. There was no fungal growth on the loaded TPE surface. At the tested levels, the addition of CuNPs did not cause significant variations in the TPE properties evaluated.  相似文献   

18.
Antimicrobial active films based on poly(lactic acid) (PLA) were prepared with poly(ε‐caprolactone) (PCL) and thymol (0, 3, 6, 9, and 12 wt%) by solvent casting methods. The films were characterized by thermal, structural, mechanical, gas barrier, and antimicrobial properties. Scanning electron microscopy analysis revealed that the surface of film became rougher with certain porosity when thymol was incorporated into the PLA/PCL blends. Thymol acted as plasticizers, which reduce the intermolecular forces of polymer chains, thus improving the flexibility and extensibility of the films. The addition of PCL into the pure PLA film decreased the glass transition temperature of the films. The presence of thymol decreased the crystallinity of PLA phase, but did not affect the thermal stability of films. Water vapor barrier properties of films slightly decreased with the increase of thymol loading. The antimicrobial properties of thymol containing films showed a significant activity against Escherichia coli and Listeria monocytogenes. The results indicated the potential of PLA/PCL/thymol composites for applications in antimicrobial packaging. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
In an attempt to find new pharmacologically active molecules, we report here the synthesis and in vitro antimicrobial activity of various 2-(2-chloro-6-methyl(3-quinolyl))-3-[2-(4-chlorophenyl)-4-oxo(3-hydroquinazolin-3-yl)]-5-[(aryl)methylene]-1,3-thiazolidin-4-ones. In vitro antimicrobial activity of the title compounds are screened against two Gram positive bacteria (Staphylococcus aureus, Streptococcus pyogenes), two Gram negative bacteria (Escherichia coli, Pseudomonas aeruginosa) and three strains of fungi (Candida albicans, Aspergillus niger, Aspergillus clavatus) using broth micro dilution method. Some derivatives bearing chloro or hydroxy group exhibited very good antimicrobial activity.  相似文献   

20.
A series of 2,5-disubstituted-1,3,4-oxadiazole derivatives bearing pyrazole moiety were synthesized by reacting various substituted pyrazole-4-carboxylic acids with different hydrazides in POCl3. All the synthesized compounds (4a–n) were characterized by IR, NMR, mass spectra and elemental analyses. Synthesized 1,3,4-oxadiazole derivatives were screened for their antibacterial activity against three different strains, namely Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa, while antifungal activity was determined against three different strains Aspergillus flavus, Chrysosporium keratinophilum and Candida albicans. The investigation of antimicrobial screening revealed that compounds 4i and 4j exhibited excellent activity when compared with the standard drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号