首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 653 毫秒
1.
运用二维NMR实验研究了作为主体的对称四甲基取代六元瓜环(TMeQ[6])与作为客体的5,5'-二甲基-2,2'-联吡啶(bmbpy)的相互作用. 2D ROESY谱上主客体分子间的NOE相关峰明确地给出了主客体的结合位置和结合物的空间结构: 客体的一个吡啶环进入了主体的内腔, 而另一个吡啶环则位于主体的一端端口外, 进入内腔的吡啶环平面位于主体的长截面上, 两个吡啶环之间为顺式构象. 2D EXSY谱呈现的客体两个吡啶上对应氢之间的交换峰表明: 高温下两个吡啶环交替进入主体的内腔, 分别结合于主体的两个端口, 形成了动态的平衡. 由2D EXSY的交换峰和对角线峰强度计算出了不同温度下的交换速率, 并由此得到了该交换过程的活化能为104.2 kJ/mol.  相似文献   

2.
肖志友  张奇龙  张云黔  朱必学 《有机化学》2008,28(12):2175-2180
合成并表征了含羟基功能基的二胺1,3-二(2-氨基苯氧基)-2-丙醇(客体). 利用X射线衍射方法研究了客体与八元瓜环Q[8]所形成包结配合物的晶体结构. 结果表明主客体间形成了1∶2的包结配合物, 两个客体分子分别从瓜环的两个端口进入瓜环内腔, 在腔内两个客体分子中的苯环间存在着π-π相互作用. 利用1H NMR技术及紫外-可见吸收光谱对主客体间的相互作用进行考察, 所得结果与晶体结构吻合.  相似文献   

3.
合成了2-苯基-咪唑[4,5-f]-1',10'-菲咯啉和对二甲氨基-2-苯基-咪唑[4,5-f]-1',10'-菲咯啉两种咪唑[4,5-f]-1',10'-菲咯啉衍生物,并经过一、二维核磁共振谱以及质谱方法的验证.利用1H NMR、质谱以及紫外可见分光光度法,考察了以六~八元瓜环为主体,咪唑[4,5-f]-1',10'-菲咯啉衍生物为客体的作用体系,以及形成的主客体包结配合物的结构特征.研究结果表明三种瓜环均与2-苯基-咪唑[4,5-f]-1',10'-菲咯啉发生相互作用,客体以较小的苯基一端穿过瓜环内腔直至苯基部分和菲咯啉部分分别露置在瓜环的两个端口外,特别是八元瓜环能容纳两个客体分子.而对二甲氨基-2-苯基-咪唑[4,5-f]-1',10'-菲咯啉仅能与七及八元瓜环相互作用,作用模式与前者相同.  相似文献   

4.
合成和表征了4个碳链长度不同二溴化1,n-亚烷基-二-2-甲基吡啶(客体,n=6,8,10,12),利用1H NMR技术、热重分析及紫外吸收光谱法考察了这些客体与七、八元瓜环(主体)的相互作用,以及形成的主客体包结物的结构特征.研究结果表明4个客体与七、八元瓜环形成不同的主客体包合物.七元瓜环可穿梭在线性客体分子上形成类轮烷型或哑铃型主客体包合物;而由于具有较大的空腔,八元瓜环可包容弯曲状的整个客体分子.  相似文献   

5.
王鹏  袁艺  景晓燕  朱果逸 《分析化学》1999,27(11):1337-1340
用1H NMR和13C NMR谱研究了新型电化学发光探针六氟磷酸二(4,4'-二甲基-2,2'-联吡啶)·(4,4'-二羧酸-2,2'-联吡啶)合钌(Ⅱ)的立体结构,通过1H-1H COSY、13C-1H HETCOR谱对其氢谱和碳谱中的各谱峰进行了归属,并给出了氢谱和碳谱峰的化学位移值.  相似文献   

6.
利用1HNMR技术以及单晶X衍射技术考察对称四甲基取代六元瓜环(TMeQ[6])与几种1,ω-亚烷基吡啶阳离子(ω=2,4,6,8,10)客体的相互作用.在这些包结配合物中,TMeQ[6]的端口效应以及空腔效应同时存在,其主客体作用模式随着客体亚烷基碳链长短不一而各不相同.对于客体1,2-二乙基吡啶(Edpy),TMeQ[6]包结Edpy的带正电荷的吡啶环部分,形成一不对称的包结配合物;对于客体1,4-二丁基吡啶(Bdpy),TMeQ[6]选择性包结Bdpy的吡啶环部分或烷基部分存在竞争作用和快速交换;而具有较长碳链的客体1,6-二己基吡啶(Hdpy)和1,8-二丁庚基吡啶(Odpy)与TMeQ[6]通过空腔的疏水作用以及外部的离子-偶极作用形成稳定的类轮烷包结配合物;客体1,10-二癸基吡啶(Ddpy)的两个吡啶环分别被两个TMeQ[6]包结形成哑铃型的包结配合物.  相似文献   

7.
利用^1HNMR技术以及单晶X衍射技术考察对称四甲基取代六元瓜环(TMeQ[6])与几种1,ω-亚烷基吡啶阳离子(ω=2,4,6,8,10)客体的相互作用.在这些包结配合物中,TMeQ[6]的端口效应以及空腔效应同时存在,其主客体作用模式随着客体亚烷基碳链长短不一而各不相同.对于客体1,2-二乙基吡啶(Edpy),TMeQ[6]包结Edpy的带正电荷的吡啶环部分,形成一不对称的包结配合物;对于客体1,4-二丁基吡啶(Bdpy),TMeQ[6]选择性包结Bdpy的吡啶环部分或烷基部分存在竞争作用和快速交换;而具有较长碳链的客体1,6-二己基吡啶(Hdpy)和1,8-二丁庚基吡啶(Odpy)与TMeQ[6]通过空腔的疏水作用以及外部的离子-偶极作用形成稳定的类轮烷包结配合物;客体1,10-二癸基吡啶(Ddpy)的两个吡啶环分别被两个TMeQ[6]包结形成哑铃型的包结配合物.  相似文献   

8.
对称四甲基六元瓜环与2-氨基甲基吡啶相互作用的研究   总被引:7,自引:0,他引:7  
分别用核磁共振、紫外可见吸收和X射线单晶衍射方法研究对称四甲基六元瓜环与2-氨基甲基吡啶的相互作用及其结构特征. 1H NMR谱图和紫外可见吸收光谱图清晰表明, 2-氨基甲基吡啶与对称四甲基六元瓜环有明显的相互作用, 客体2-氨基甲基吡啶的吡啶环部分进入了瓜环空腔, 1H NMR谱图相关质子峰的积分强度以及客体吸光度随主体瓜环浓度变化明确表示它们之间形成了1∶1的包结配合物, 此包结比并不随瓜环的浓度增加而改变. X射线单晶衍射法对包结配合物晶体的测定进一步证实了核磁共振、紫外可见吸收方法所得结论.  相似文献   

9.
设计、合成了医药中间体3-吡啶基苯并吲唑衍生物(DIHY)作为客体分子,并利用~1H NMR、质谱、等温量热滴定和紫外吸收光谱法考察了主体对称四甲基六元瓜环(TMeQ[6])、七元瓜环(Q[7])以及八元瓜环(Q[8])和与其相互作用的结构特征.结果表明,这三种具有不同空腔大小的瓜环与DIHY之间具有不同的作用模式.TMe Q[6]-DIHY体系中,客体分子位于瓜环的端口处; Q[7]-DIHY体系中,客体分子DIHY的4,5-二氢-2H-苯并吲唑部分进入到瓜环的空腔内部,而吡啶基团位于瓜环的端口形成1∶1的类轮烷结构; Q[8]-DIHY体系中, 2个客体分子DIHY的4,5-二氢-2H-苯并吲唑部分以"面对面"的堆叠方式进入到Q[8]的空腔中,而吡啶基团位于瓜环的端口,自组装形成1∶2的超分子结构.  相似文献   

10.
合成了2-苯基-咪唑[4,5-f]-1',10'-菲咯啉和对二甲氨基-2-苯基-咪唑[4,5-f]-1',10'-菲咯啉两种咪唑[4,5-f]-1',10'-菲咯啉衍生物, 并经过一、二维核磁共振谱以及质谱方法的验证. 利用1H NMR、质谱以及紫外可见分光光度法, 考察了以六~八元瓜环为主体, 咪唑[4,5-f]-1',10'-菲咯啉衍生物为客体的作用体系, 以及形成的主客体包结配合物的结构特征. 研究结果表明: 三种瓜环均与2-苯基-咪唑[4,5-f]-1',10'-菲咯啉发生相互作用, 客体以较小的苯基一端穿过瓜环内腔直至苯基部分和菲咯啉部分分别露置在瓜环的两个端口外, 特别是八元瓜环能容纳两个客体分子. 而对二甲氨基-2-苯基-咪唑[4,5-f]-1',10'-菲咯啉仅能与七及八元瓜环相互作用, 作用模式与前者相同.  相似文献   

11.
Interactions between a symmetrical tetramethyl-substituted cucurbit[6]uril (host: TMeQ[6]) and 1,ω-alkylenedipyridine (ω = 2, 4, 6, 8, 10) dicationic guests were investigated using 1H NMR spectroscopy and single crystal X-ray crystallography. In these inclusion complexes, combined cavity and portal binding in TMeQ[6] were observed, and the length of the bridged alkylene was found to play an important role not only in balancing the overall hydrophilic/hydrophobic interaction between the host and the guest, but also in defining the structure of the resulting inclusion complexes. For the guest 1,2-ethylenedipyridine (Edpy), TMeQ[6] includes a positively charged pyridine ring of Edpy to form an unsymmetrical inclusion complex; for the guest 1,4-butylenedipyridine (Bdpy), TMeQ[6] includes a positively charged pyridine ring of Bdpy, but the different competitive interactions in and between the related inclusion complexes could lead to a fast exchange between the hosts and guests. For the guests with longer bridge chains, such as 1,6-hexamethylenedipyridine (Hdpy) or 1,8-octylenedipyridine (Odpy), a stable pseudorotaxane inclusion complex is formed by combining the hydrophobic cavity and the outer portal dipole-ion interactions. However, for 1,10-decatylenedipyridine (Ddpy), the two TMeQ[6] host molecules include the two end pyridine rings of Ddpy and form a dumbbell inclusion complex. Supported by the National Natural Science Foundation of China (Grant Nos. 20662003 & 20767001), the International Collaborative Project of Guizhou Province (Grant No. 2007400108), the Science Technology Fund of Guizhou Province (Grant No. J-2008-2012) and the Natural Science Youth Foundation of Guizhou University (Grant No. 2007-005)  相似文献   

12.
Zeng JP  Cong H  Chen K  Xue SF  Zhang YQ  Zhu QJ  Liu JX  Tao Z 《Inorganic chemistry》2011,50(14):6521-6525
Using the achiral N,N'-bis(2-pyridylmethyl)-1,6-hexanediamine ligand bearing two end pyridyl groups as the source of conformational chirality, a novel type of TMeQ[6]-based helical polyrotaxane was prepared and characterized by X-ray crystallography and (1)H NMR spectroscopy. The chirality of the polyrotaxane was generated from twisting of the hexylidene of the N,N'-bis(2-pyridylmethyl)-1,6-hexanediamine "string" when bound within the hydrophobic cavity of TMeQ[6]. Two opposite chiral helical polyrotaxanes crystallize as a racemic compound.  相似文献   

13.
We explored the use of cucurbiturils to form inclusion complexes to overcome the solubility problems of kinetin, a plant cytokinin. Inclusion complexes between kinetin and Q[7], TMeQ[6] and HMeQ[6] in aqueous solution and in solid state were investigated by phase solubility studies, 1H NMR and IR. The effects of pH and temperature on complex stability were also investigated. Phase solubility studies showed that kinetin solubility increased in a linear fashion as a function of Q[7] and TMeQ[6] concentrations. However, kinetin solubility increased first, then decreased as the HMeQ[6] concentration increased, and the maximum solubility of kinetin was achieved at 4.95 mM in HMeQ[6]. The solubility of kinetin as well as the stability constant of its complex with Q[7] were affected by the pH of the medium. The thermodynamic parameters of the complex formation were also determined, and it showed that the formation of the inclusion complexes between kinetin and Q[7] was enthalpy controlled, suggesting that hydrophobic and van der Waals interactions were the main driving forces. Moreover, we found that the size of the cavity of cucurbituril played an important role in the association process. The formation of inclusion complexes between Q[7], TMeQ[6] and HMeQ[6] with kinetin was confirmed by 1H NMR, and IR spectroscopy showed the presence of inclusion complexes in solid state. Our results demonstrated that the complexation of kinetin with Q[n] could be used to improve the solubility of kinetin in aqueous solution.  相似文献   

14.
The host–guest interaction of symmetrical α,α′,δ,δ′-tetramethyl-cucurbit[6]uril (TMeQ[6]) with the hydrochloride salts of N,N′-bis(4-pyridylmethyl)-1,6-hexanediamine (P6), N,N′-bis(3-pyridyl-methyl)-1,6-hexanediamine (M6) and N,N′-bis(2-pyridylmethyl)-1,6-hexanediamine (O6) was investigated via single crystal X-ray diffraction, 1H NMR spectroscopy, electronic absorption spectroscopy and fluorescence spectroscopy. Single crystal X-ray diffraction showed that the hexyl moiety of P6 or M6 was incorporated in the cavity of TMeQ[6], while the two pyridylmethyl moieties of O6 were incorporated in the TMeQ[6] cavity in the solid state. The 1H NMR results in aqueous solution revealed that the TMeQ[6]-P6 and TMeQ[6]-M6 host–guest interaction systems produce a kinetic dumbbell-shaped inclusion complex at the initial stage and then an equilibrium pseudorotaxane-shaped inclusion complex as the only product after heating. However, only the pseudorotaxane-shaped inclusion complex was observed for the TMeQ[6]-O6 host–guest interaction system. Aqueous absorption spectrophotometric analysis showed that the dumbbell-shaped inclusion complexes were stable at pH 5.6, had a host–guest ratio of 2:1 and formed quantitatively at ~1011 l2/mol2 for the TMeQ[6]-M6 and TMeQ[6]-O6 systems. The transformation from dumbbell to pseudorotaxane-shaped inclusion complexes for the TMeQ[6]-P6 and TMeQ[6]-M6 host–guest systems yielded activation energies of 59.35 ± 1.55 and 78.7 ± 3.45 kJ/mol, respectively. The pseudorotaxane-shaped inclusion complexes were stable at pH 5.6, had a host–guest ratio of 1:1 and formed quantitatively at ~107 l/mol for the TMeQ[6]-M6 and TMeQ[6]-P6 systems.  相似文献   

15.
Interaction between tetramethylcucurbit[6]uril (TMeQ[6], host) with hydrochloride salts of 2-phenylpridine (G1), 2-benzylpyridine (G2), and 4-benzylpyridine (G3) (guests) have been investigated by using 1H NMR spectroscopy and electronic absorption spectroscopy and theoretical calculations. The 1H NMR spectra analysis established an interaction model in which the host selectively included the phenyl moiety of the HCl salt of the above three guests, and formed inclusion complexes with a host-guest ratio of 1:1. Absorption spectrophotometric analysis allowed quantitative measurement of the stability of these host-guest inclusion complexes. Particularly, we have established a competitive interaction in which one host-guest inclusion complex pair is much more stable than another host-guest inclusion complex pair. The stability constants for the three host-guest inclusion complexes of TMeQ[6]-G1, TMeQ[6]-G2, and TMeQ[6]-G3 are approximately 2x10(6), 60.7, and 19.9 mol-1.L, respectively. To understand how subtle differences in the structure of the title guests lead to a significant difference in the stability of the corresponding host-guest inclusion complexes with the TMeQ[6], ab initio theoretical calculations have been performed, not only for the gas phase but also the solution phase (water as solvent) in all cases. The calculation results revealed that when the phenyl moiety of the three pyridine derivate guests was included, the host-guest complexation reached the minimum, and the corresponding energy differences for the formation of the title host-guest inclusion complexes are qualitatively consistent with the experimental results.  相似文献   

16.
《中国化学快报》2023,34(7):108040
The binding interactions between 4-aminopyridine (4-AP) and a series of cucurbit[n]urils (Q[5], Q[6], TMeQ[6], Q[7], Q[8]) have been studied using 1H NMR spectroscopy, UV–vis absorption spectroscopy, isothermal titration calorimetry (ITC) and X-ray crystallography. The data indicates that the Q[5]@4-AP complex exhibits exo binding, which is not observed in the other four host-guest complexes. Furthermore, X-ray crystallography clearly reveals how the Q[n]s bind with 4-AP to form complexes, for example Q[5] forms an outer-surface complex, whilst Q[6], TMeQ[6] and Q[7] formed 1:1 host and guest type complexes, and Q[8] formed a stable 1:2 ternary complex due to its large cavity, which can accommodate two 4-AP molecules.  相似文献   

17.
Interaction between the normal cucurbit[n]urils (n = 6,7,8; Q[6], Q[7], Q[8]) and a sym-tetramethyl-substituted cucurbit[6]uril derivative (TMeQ[6]) with the hydrochloride salts of some imidazole derivatives N-(4-hydroxylphenyl)imidazole (g1), N-(4-aminophenyl)imidazole (g2), 2-phenylimidazole (g3) in aqueous solution was investigated by using 1H NMR spectroscopy, electronic absorption spectroscopy and fluorescence spectroscopy, as well as by using a single crystal X-ray diffraction determination. The 1H NMR spectra analysis established a basic interaction model in which inclusion complexes with a host:guest ratio of 1:1 forms for the Q[6]s and Q[7] cases, while with a host:guest ratio of 1:2 form for the Q[8] cases. It was common that the hosts selectively bound the phenyl moiety of the guests. Absorption spectrophotometric and fluorescence spectroscopic analysis in aqueous solution defined the stability of the host–guest inclusion complexes at pH 5.8 with a host:guest ratio of 1:1 form quantitatively as logK values between 4 and 5 for the smaller hosts Q[6 or 7]s, while with a host:guest ratio of 1:2 form quantitatively as logK values between 11 and 12 for the host Q[8]. Two single crystal X-ray structures of the inclusion complexes TMeQ[6]-g2 · HCl and TMeQ[6]-g3 · HCl showed the phenyl moiety of these two guests inserted into the host cavity, which supported particularly the 1H NMR spectroscopic study in solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号