首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
In the present work, a visible-light-driven Ag/AgBr/ZnFe2O4 photocatalyst has been successfully synthesized via a deposition–precipitation and photoreduction method. The crystal structure, chemical composition, morphology and optical properties of the as-prepared nanocomposites were characterized by X-ray diffraction spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscope, UV–vis diffuse reflectance spectroscopy and photoluminescence. The photocatalytic activities of the Ag/AgBr/ZnFe2O4 nanocomposites were evaluated through the photodegradation of gaseous toluene and methyl orange (MO) under visible light. The results revealed that the as-prepared Ag/AgBr/ZnFe2O4 nanocomposite exhibited excellent photocatalytic activity. The degrading efficiency of MO could still reach 90% after four cycles, and the Ag/AgBr/ZnFe2O4 nanocomposite could be recycled easily by a magnet. Additionally, the enhanced photocatalytic mechanism was discussed according to the trapping experiments, which indicated that the photo-generated holes (h+) and •O2 played important roles in photodegradation process. At last, a possible photocatalytic oxidation pathways of toluene was proposed based on the results of GC–MS. The Ag/AgBr/ZnFe2O4 composites showed potential application for efficient removal of organic pollutant.  相似文献   

2.
CeO2/zeolite nanocomposite was successfully prepared by the mixing-calcination method. The structural characteristics of photocatalyst were investigated by XRD, SEM, TEM and EDX. Photocatalytic degradation experiments were carried out with varying amounts of the CeO2/zeolite, the ratio of 3:1 (CeO2/zeolite) was exhibited excellent photocatalytic activity towards dye degradation. Synergistic effect of CeO2/zeolite played a key role in photocatalytic degradation. The main reactive oxygen species was determined by trapping experiments. Additionally, the recyclability was tested up to the fourth cycle. The CeO2/zeolite nanocomposite is a promising photocatalyst for removing trace and unprocessed organic contaminants in the industrial dye waste water treatment. The efficiency of CeO2/zeolite nanocomposite offers a potential economical route to degrade organic contaminants and recovering photocatalyst simultaneously.  相似文献   

3.
Silver ferrite–graphene (AgFeO2‐G) as a nanocomposite photocatalyst shows potent visible‐light photocatalytic activity for the degradation of organic contaminants, and generates the strong oxidants hydroxyl radical (OH) and superoxide anion radical (O2•−) via photoelectrochemical decomposition of H2O and O2 in the presence of air and visible light irradiation. The photogenerated electrons of AgFeO2 can transfer easily from the conduction band to the reduced graphene oxide, efficiently preventing the direct recombination of electrons and holes. As a matter of fact, AgFeO2 has a low bandgap. Furthermore, AgFeO2 nanoparticles themselves have a magnetic property, which makes them magnetically separable. The experimental results show that the graphene nanosheets in the nanocomposite catalyst are exfoliated and decorated homogeneously with AgFeO2 nanoparticles. The photodegradation occurs in a short time (ca 40 min). Also, the photocatalytic activity of the nanocomposite does not show any clear loss after ten recycles of the degradation process.  相似文献   

4.
In this study, the photocatalytic degradation of oxytetracycline (OTC) in aqueous solutions has been studied under different conditions such as initial pollutant concentrations, amount of catalyst, and pH of the solution. Experimental results showed that photocatalysis was clearly the predominant process in the pollutant degradation, since OTC adsorption on the catalyst and photolysis are negligible. The optimal TiO2 concentration for OTC degradation was found to be 1.0 g/L. The apparent rate constant decreased, and the initial degradation rate increased with increasing initial OTC concentration with the other parameters kept unchanged. Subsequently, data obtained from photocatalytic degradation were used for training the artificial neural networks (ANN). The Levenberg–Marquardt algorithm, log sigmoid function in the hidden layer, and the linear activation function in the output layer were used. The optimized ANN structure was four neurons at the input layer, eighteen neurons at the hidden layer, and one neuron at the output layer. The application of 18 hidden neurons allowed to obtain the best values for R2 and the mean squared error, 0.99751 and 7.504e–04, respectively, showing the relevance of the training, and hence the network can be used for final prediction of photocatalytic degradation of OTC with suspended TiO2.  相似文献   

5.
采用原位插层法制备了CdS-TiO2/累托石纳米复合材料. 以X射线粉未衍射、电镜、红外光谱、漫反射吸收光谱及液氮吸附比表面积测定等方法对其微结构和性能进行了分析与表征. 并以罗丹明B(RB)为模拟有机污染物, 对比研究了累托石、TiO2/累托石与CdS-TiO2/累托石的吸附和光催化性能. 结果表明, 与累托石相比, CdS-TiO2/累托石具有更复杂的多孔结构、更大的孔体积和比表面积以及更有效的光吸收能力; 该类复合材料表现出良好的吸附性能和光催化降解活性.  相似文献   

6.
Herein, cobalt (Co)-based metal–organic zeolitic imidazole frameworks (ZIF-67) coupled with g-C3N4 nanosheets synthesized via a simple microwave irradiation method. SEM, TEM and HR-TEM results showed that ZIF-67 were uniformly dispersed on g-C3N4 surfaces and had a rhombic dodecahedron shape. The photocatalytic properties of g-C3N4/ZIF-67 nanocomposite were evaluated by photocatalytic dye degradation of crystal violet (CV), 4-chlorophenol (4-CP) and photocatalytic hydrogen (H2) production. In presence of visible light illumination, the photocatalytic dye results showed that 95% CV degradation and 53% 4-CP degradation within 80 min. The H2 production of the g-C3N4/ZIF-67 composite was 2084 μmol g−1, which is 3.84 folds greater than that of bare g-C3N4 (541 μmol g−1).  相似文献   

7.
To eliminate volatile organic compounds (VOCs) from contaminated air, a novel medium-scale baffled photocatalytic reactor was designed and fabricated, using immobilized ZnO/SnO2 coupled oxide photocatalysts. Toluene was chosen as a representative pollutant of VOCs to investigate the degradation mechanism and the parameters affecting photocatalytic degradation efficiency. The preliminary experimental results indicate that the degradation efficiency of toluene increased with the increase of the light irradiation dosage, while it decreased with the increase of concentrations of toluene. The degradation efficiency increased rapidly with the increase of the relative humidity in a low humidity range from 0 to 35%, but decreased gradually in a high relative humidity (i.e., >35%). The optimum experimental conditions for toluene degradation is a toluene concentration of 106 mg m?3, a relative humidity of 35%, and an illumination intensity of ca. 6 mW cm?2 at the surface of ZnO/SnO2 photocatalysts. The intermediates produced during the gaseous photocatalytic degradation process were identified using the GC–MS technique. Based on these identified intermediates, the photocatalytic mechanism of toluene into ZnO/SnO2 coupled oxide catalyst was also deduced.  相似文献   

8.
Accelerating the separation efficiency of photoexcited electron-hole pairs with the help of highly active co-catalysts has proven to be a promising approach for improving photocatalytic activity. Thus far, the most developed co-catalysts for semiconductor-based photocatalysis are inorganic materials; the employment of a specific organic molecule as a co-catalyst for photocatalytic hydrogen evolution and pollutant photodegradation is rare and still remains a challenging task. Herein, we report on the use of an organic molecule, oxamide (OA), as a novel co-catalyst to enhance electron-hole separation, photocatalytic H2 evolution, and dye degradation over TiO2 nanosheets. OA-modified TiO2 samples were prepared by a wet chemical route and demonstrated improved light absorption in the visible-light region and more efficient charge transport. The photocatalytic performance of H2 evolution from water splitting and rhodamine B (RhB) degradation for an optimal OA-modified TiO2 photocatalyst reached 2.37 mmol g-1 h-1 and 1.43 × 10?2 min?1, respectively, which were 2.4 and 3.8 times higher than those of pristine TiO2, respectively. A possible mechanism is proposed, in which the specific π-conjugated structure of OA is suggested to play a key role in the enhancement of the charge transfer and catalytic capability of TiO2. This work may provide advanced insight into the development of a variety of metal-free organic molecules as functional co-catalysts for improved solar-to-fuel conversion and environmental remediation.  相似文献   

9.
随着全球工业化进程的发展,环境污染问题日益严重,已经成为21世纪影响人类生存与发展的重要问题.光催化氧化技术被认为是解决环境问题最有应用前景的技术之一,已经成为环境领域的研究热点.众所周知,二硫化钼(MoS2)可以被可见光激发产生电子-空穴对,但是由于其氧化还原电势并不高,抑制了氧分子活化的量子效率,且激发后的光生载流子容易复合,导致光催化效率不高.因此,迫切需要对MoS2光催化材料进行修饰与改性,采用提高光催化过程中活性氧(ROSs)的量来提高其光催化活性.银钒氧化物(AgVO3,Ag2V4O11,Ag3VO4和Ag4V2O7等)因其在锂电池、传感器和光催化剂领域的应用而引起了人们的关注.其中,AgVO3具有较窄的带隙和高度分散的价带,具有潜在的应用价值.本文采用水热法成功制备了AgVO3/MoS2复合光催化剂,并采用X射线粉末衍射、扫描电子显微、透射电子显微镜和紫外-可见漫反射光谱等表征技术研究了所制光催化剂的物相结构、样品形貌和光学性能.以四环素为研究对象,将其应用于AgVO3/MoS2复合光催化剂的降解实验.结果表明,随着AgVO3质量比从1.0 wt%增加到3.0 wt%,所得催化剂的光催化活性不断提高;当进一步增加AgVO3的质量时,复合催化剂的活性逐渐降低.这是由于过多的AgVO3的引入导致在光催化剂表面形成电子-空穴对复合中心,增加了载流子复合几率.因此,AgVO3/MoS2复合光催化剂中AgVO3的最佳质量比为3.0 wt%,其降解速率常数为0.0087 min–1,分别是MoS2(0.00509 min–1)和AgVO3(0.00495 min–1)的1.71和1.76倍.由于AgVO3改性后的MoS2具有优异的光催化性能,能促进O2的吸附/活化,加速MoS2表面生成H2O2的双电子氧还原反应,从而产生更多的ROSs.利用电子自旋共振光谱、POPHA荧光检测和自由基捕获实验相结合的方法来阐明ROSs的形成机理.同时,ROSs的产生会加速消耗AgOV3导带上的电子,为降解污染物留下更多的空穴.本文为表面催化工程促进ROSs生成的合理设计提供了新的思路,有望在环境治理中得到实际应用.  相似文献   

10.
This study investigated the positive effect of surface modification with ozone on the photocatalytic performance of anatase TiO2 with dominated (001) facets for toluene degradation. The performance of photocatalyst was tested on a home-made volatile organic compounds degradation system. The ozone modi cation, toluene adsorption and degradation mechanism were established by a combination of various characterization methods, in situ diffuse reflectance infrared fourier transform spectroscopy, and density functional theory calculation. The surface modi cation with ozone can significantly enhance the photocatalytic degradation performance for toluene. The abundant unsaturated coordinated 5c-Ti sites on (001) facets act as the adsorption sites for ozone. The formed Ti-O bonds reacted with H2O to generate a large amount of isolated Ti5c-OH which act as the adsorption sites for toluene, and thus significantly increase the adsorption capacity for toluene. The outstanding photocatalytic performance of ozone-modified TiO2 is due to its high adsorption ability for toluene and the abundant surface hydroxyl groups, which produce very reactive OH radicals under irradiation. Furthermore, the O2 generated via ozone dissociation could combine with the photogenerated electrons to form superoxide radicals which are also conductive to the toluene degradation.  相似文献   

11.
Construction of an effective heterojunction for unimpeded flow of photogenerated charges and their prolonged separation is imperative for environmental photocatalysis. Herein, we have designed an efficient magnetic ZnO/BiVO4 type-II heterostructure, which was employed for proficient degradation of persistent methyl violet dye with an efficiency of 97.6% in 90 min and a hazardous organic pollutant, namely, bisphenol A. UV-DRS and photoluminescence studies demonstrated that the fabricated nanocomposite exhibited effective light absorption and prolonged charge separation, thereby resulting in high photocatalytic efficacy under visible light irradiation. The efficacy of developed magnetic ZnO/BiVO4 was also compared with pristine BiVO4 and undoped magnetic ZnO, which indicated that the constructed heterostructure displayed approximately threefold and sixfold activity in contrast with bare BiVO4 and undoped magnetic ZnO nanoparticles, respectively. Radical trapping studies, ESR analysis along with GC-MS analysis were conducted to elucidate the mechanistic pathway during the photodegradation process. This work provides a rational technical approach and research ideas for photocatalytic degradation of harmful organic pollutants in an environment-friendly manner by employing energy-efficient LEDs. Besides, good recyclability of catalyst makes it a promising candidate for large-scale applications.  相似文献   

12.
In this research, a novel KIT-5/Bi2S3-Fe3O4 nanocomposite was prepared. The structure and morphology properties of the nanocomposite were well characterized by XRD, FESEM-EDS-mapping, TEM, and N2 adsorption–desorption. Benefiting from the visible light, the as-prepared KIT-5/Bi2S3-Fe3O4 nanocomposite exhibit significantly improved photocatalytic performance for the degradation of parathion. The optimum photocatalytic efficiency of KIT-5/Bi2S3-Fe3O4 nanocomposite was investigated with the central composite design using Design Expert software. The four critical variables affecting parathion degradation such as the concentration of parathion, pH, irradiation time, and amount of KIT-5/Bi2S3-Fe3O4 nanocatalyst. A polynomial function corresponding to degradation percent was obtained for the experimental data. The results showed that this catalyst has a good performance for the degradation of parathion.  相似文献   

13.
载钛羟基磷灰石光催化降解内分泌干扰物双酚A   总被引:1,自引:0,他引:1  
对载钛羟基磷灰石(TiHAP)进行了透射电镜、X射线衍射、紫外-可见光谱和Zeta电位表征,并应用液相色谱-质谱技术对比了TiHAP和P25 TiO2对环境内分泌干扰物双酚A(BPA)的吸附和光催化降解性能,探讨了富里酸和Fe3+对TiHAP薄膜光催化性能的影响。结果表明,TiHAP和TiO2粉体对BPA的吸附符合Langmuir吸附等温方程,且前者吸附性能更大。TiHAP薄膜光催化降解BPA的性能优于TiO2薄膜;富里酸和Fe3+对TiHAP和TiO2薄膜光催化性能的影响趋势不同,从能带结构、电子转移和吸光性等角度分析了性能不同的原因。本结果可以为应用TiHAP降解环境内分泌干扰物提供依据。  相似文献   

14.
SnO2–TiO2/fly ash cenospheres (FAC) were prepared via hydrothermal method and used as an active photocatalyst in a photocatalytic system. Scanning electron microscopy, X‐ray diffraction analysis, UV–Vis diffuse reflectance spectroscopy, Fourier transform infrared spectroscopy and N2 adsorption–desorption measurements were used to determine the structure and optical property of SnO2–TiO2/FAC. Phenol was selected as the model substance for photocatalytic reactions to evaluate catalytic ability. Results showed that the degradation efficiency of phenol by SnO2–TiO2/FAC was 90.7% higher than that decomposed by TiO2/FAC. Increased efficiency could be due to the enhanced synergistic effect of semiconductors and FAC could provide more adsorption sites for the pollutant in the photocatalytic reaction. Furthermore, SnO2–TiO2/FAC composites exhibited excellent photocatalytic stability in four reuse cycles. Radical‐trapping experiments further revealed the dominating functions of holes in the photocatalytic reaction.  相似文献   

15.
The effects of a room temperature ionic liquid, 1-butyl-3-methylimidazolium terafluoroborate ([Bmim]BF4), on the photocatalytic performance of Degussa P25 TiO2 were investigated. Also, the photocatalysis mechanism was systematically analyzed by conducting different reactive radical trapping experiments. The results showed that photogenerated electrons were the main reactive species involved in the photocatalytic degradation of methyl orange (MO), while ?OH radicals and photogenerated holes played an important role in the photocatalytic decomposition of rhodamine B (RhB). The addition of ionic liquid (IL) could slightly enhance the photocatalytic degradation rate of MO because adsorption of [Bmim]+ ions on the TiO2 surface not only enhanced traping and transfer of photogenerated electrons, but also facilitated adsorption of negatively charged MO. On the contrary, IL suppressed the degradation rate of RhB because [Bmim]+ on the TiO2 surface not only hindered the access of positively charged RhB to TiO2, but also restricted the diffusion of positively charged holes to the TiO2/solution interface.  相似文献   

16.
Graphene oxide (GO) and silver nanoparticles (Ag NPs) sequentially decorated nitrogen‐doped titania nanotube array (N‐TiO2 NTA) had been designed as visible‐light‐driven self‐cleaning surface‐enhanced Raman scattering (SERS) substrate for a recyclable SERS detection application. N‐TiO2 NTA was fabricated by anodic oxidation and then doping nitrogen treatment in ammonia atmosphere, acting as a visible‐light‐driven photocatalyst and supporting substrate. Ag/GO/N‐TiO2 NTA was prepared by decorating GO monolayer through an impregnation process and then depositing Ag NPs through a polyol process on the surface of N‐TiO2 NTA, acting as the collection of organic molecule and Raman enhancement. The SERS activity of Ag/GO/N‐TiO2 NTA was evaluated using methyl blue as an organic probe molecule, revealing the analytical enhancement factor of 4.54 × 104. Ag/GO/N‐TiO2 NTA was applied as active SERS substrate to determine a low‐affinity organic pollutant of bisphenol A, revealing the detection limit of as low as 5 × 10?7 m . Ag/GO/N‐TiO2 NTA could also achieve self‐cleaning function for a recycling utilization through visible‐light‐driven photocatalytic degradation of the adsorbed organic molecules. Ag/GO/N‐TiO2 NTA has been successfully reused for five times without an obvious decay in accuracy and sensitivity for organic molecule detection. The unique properties of this SERS substrate enable it to have a promising application for the sensitive and recyclable SERS detection of low‐affinity organic molecules. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
The main aim of this work is to discriminate the closely related adsorption and catalytic degradation processes that occur during a photocatalytic reaction. Very high-surface-area TiO2 and Pd-doped TiO2 were synthesized by microwave-assisted hydrothermal synthesis and used for degradation of methylene blue as a model pollutant dye. Thorough structural, morphological, and surface analyses of the synthesized catalysts were conducted to investigate key material properties that influence adsorption and catalytic performance. The adsorption capacity of the catalysts was determined by fitting adsorption data using the Langmuir isotherm model, and the photocatalytic activity of the synthesized samples was evaluated by periodically measuring the concentration of methylene blue as it was photocatalytically degraded under ultraviolet (UV) light. The results indicated that noble-metal incorporation compromised adsorption but favored catalytic performance.  相似文献   

18.
Sulfur doped ZnO/TiO2 nanocomposite photocatalysts were synthesized by a facile sol‐gel method. The structure and properties of catalysts were characterized by X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), UV‐vis diffusive reflectance spectroscopy (DRS) and N2 desorption‐adsorption isotherm. The XRD study showed that TiO2 was anatase phase and there was no obvious difference in crystal composition of various S‐ZnO/TiO2. The XPS study showed that the Zn element exists as ZnO and S atoms form SO2?4. The prepared samples had mesoporosity revealed by N2 desorption‐adsorption isotherm result. The degradation of Rhodamine B dye under visible light irradiation was chosen as probe reaction to evaluate the photocatalytic activity of the ZnO/TiO2 nanocomposite. The commercial TiO2 photocatalyst (Degussa P25) was taken as standard photocatalyst to contrast the prepared different photocatalyst in current work. The improvement of the photocatalytic activity of S‐ZnO/TiO2 composite photocatalyst can be attributed to the suitable energetic positions between ZnO and TiO2, the acidity site caused by sulfur doping and the enlargement of the specific area. S‐3.0ZnO/TiO2 exhibited the highest photocatalytic activity under visible light irradiation after Zn amount was optimized, which was 2.6 times higher than P25.  相似文献   

19.
A novel MnFe2O4–porous organic polymer (POP) nanocomposite was synthesized by a facile hydrothermal method and using the highly cross‐linked N‐rich benzene–benzylamine POP. The nanocomposite presented highly efficient photocatalytic performance in the hydrogen evolution reaction (HER) from pure water without addition of any sacrificial agent under one AM 1.5 G sunlight illumination. A photocatalytic activity of 6.12 mmol h?1 g?1 was achieved in the absence of any noble metal cocatalyst, which is the highest H2 production rate reported for nonprecious metal catalysts. The photocatalytic performance of MnFe2O4‐POP could be attributed to the intrinsic synergistic effects of manganese ferrite (MnFe2O4) nanoclusters interacting with the nitrogen dopant POP with a unique mesoporous nanoarchitecture and spatially confined growth of MnFe2O4 in the interconnected POP network, leading to high visible‐light absorption with fast electron transport.  相似文献   

20.
Visible‐light‐driven plasmonic photocatalyst Ag‐TiO2 nanocomposite hollow spheres are prepared by a template‐free chemically‐induced self‐transformation strategy under microwave‐hydrothermal conditions, followed by a photochemical reduction process under xenon lamp irradiation. The prepared samples are characterized by using scanning electron microscopy, transmission electron microscopy, X‐ray diffraction, N2 adsorption‐desorption isotherms, X‐ray photoelectron spectroscopy, UV/Vis and Raman spectroscopy. Production of ?OH radicals on the surface of visible‐light illuminated TiO2 was detected by using a photoluminescence method with terephthalic acid as the probe molecule. The photocatalytic activity of as‐prepared samples was evaluated by photocatalytic decolorization of Rhodamine B (RhB) aqueous solution at ambient temperature under visible‐light irradiation. The results show that the surface plasmon absorption band of the silver nanoparticles supported on the TiO2 hollow spheres was red shifted, and a strong surface enhanced Raman scattering effect for the Ag‐TiO2 nanocomposite sample was observed. The prepared nanocomposite hollow spheres exhibits a highly visible‐light photocatalytic activity for photocatalytic degradation of RhB in water, and their photocatalytic activity is higher than that of pure TiO2 and commercial Degussa P25 (P25) powders. Especially, the as‐prepared Ag‐TiO2 nanocomposite hollow spheres at the nominal atomic ratio of silver to titanium ( R ) of 2 showed the highest photocatalytic activity, which exceeds that of P25 by a factor of more than 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号