首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
异金属原子引入原子精确的金属纳米团簇是调控团簇物理化学性质的有效手段,目前报道的异金属原子掺杂团簇大多数是单个金属原子掺入金属团簇中形成的二元金属纳米团簇,而两个异金属原子同时掺入同一个金属团簇中形成三元金属纳米团簇的报道较少.本工作中,我们报道了Pd和Hg双原子同时掺入Au25(PET)18(PET=苯乙硫醇)团簇中形成HgPdAu23(PET)18新团簇,推测了Pd和Hg在三元金属团簇中最可能的位置,即Pd位于三元金属团簇的内核中心,而Hg原子位于三元金属团簇内核的表面.不同金属种类以及不同的掺杂位置导致了三元金属团簇HgPdAu23(PET)18具有不同于原始团簇Au25(PET)18和二元金属团簇PdAu24(PET)18和HgAu24(PET)18的电子构型.本研究为双金属异原子掺入金属纳米团簇的精准制备提供了新的思...  相似文献   

2.
通过静电吸引策略将具有高度分散性的原子精确纳米团簇[Pd3Cl(PPh2)2(PPh3)3]+(Pd3Cl)负载在介孔SBA-15棒上。结构明确的Pd3Cl/SBA-15催化剂在以水作为溶剂以及温和的反应条件下对催化Sonogashira碳-碳偶联反应展现了较好的催化性能以及循环性。在此基础上,我们研究了Pd3Cl团簇结构与性能之间的关系,并证实内核的Pdδ+(0<δ<2)与配体之间的协同效应是催化反应的关键。  相似文献   

3.
金属催化剂在工业、环境、能源以及生物等过程具有重要的应用.设计具有特定活性、环境友好型以及室温下具有反应活性的催化剂,需要在分子水平对金属催化剂的基元步骤,活性位点的结构以及催化反应微观机理有充分的认识.然而,由于宏观催化剂表面结构异常复杂,催化反应常受到溶剂、压力、金属颗粒团聚、催化剂表面缺陷等因素的干扰,利用现有实验仪器,从微观角度探索金属催化反应机理仍具有较大挑战,因此,对金属催化剂活性位的结构以及反应微观机理的认识还不十分清楚.质谱方法结合现代量子化学理论计算,提供了在气相条件下实验探索化学反应微观机理的有力工具,团簇反应可在隔离外界条件、可控以及可重复条件下进行,可以排除一些难以控制因素的干扰,可在化学键和分子结构水平认识金属活性位的结构以及催化反应的微观机理.气相金属团簇离子可用多种实验方法制备,与反应物分子反应后可利用多种质谱仪器探测,根据实验上所得的具有反应活性的团簇,结合现代量子化学理论模拟,得到金属催化反应的基元步骤以及微观反应机理信息,所得反应机理信息为宏观催化剂的设计提供重要理论研究基础.本综述总结了团簇实验上已经探测到的金属单原子离子、金属团簇、金属氧化物团簇和金属化合物催化的气相反应.反应物分子囊括了大量的无机和有机分子,包括CO,H2,CH4,C2H2,C2H4,C6H6,CH3OH,HCOOH,CH3COOH等.本综述主要介绍了以下三类催化反应:(1)CO催化氧化;(2)CH4催化转化;(3)催化脱羧反应,并重点关注贵金属单原子掺杂团簇独特的催化反应性.单原子催化剂可最大限度地利用有限的贵金属.在化学反应方面,单原子催化剂具有特异的反应活性,选择性以及稳定性.本综述对气相团簇反应中报道的两个重要的贵金属单原子掺杂团簇的催化反应进行了详细介绍:(1)金原子掺杂的AuAl3O3-5+团簇为首次报道的可以利用分子氧催化氧化CO的团簇单原子催化剂,我们对Au原子起催化作用的本质原因进行了介绍:(2)铂原子掺杂的PtAl3O5-7-团簇能利用分子氧催化氧化CO,该研究提出了"电负性阶梯"效应来解释Pt原子催化的微观机理,且此效应有望对大部分贵金属适用.此外,本综述对CO催化氧化反应和CH4催化转化反应的研究现状以及尚未解决的问题进行了剖析.相比CO的催化氧化反应,科学家对CH4催化转化反应机理的认识还不够深入,还需要进一步实验研究,而团簇单原子催化剂有望在此领域有所突破.  相似文献   

4.
单原子分散催化剂由于其独特的结构和性质,在催化研究中已展现出巨大的潜力,成为了催化研究的前沿领域.传统的催化剂制备方法(例如共沉积,浸渍法等)在单原子分散催化剂的制备中卓有成效,但不断涌现的新方法能够制备出传统方法不能制备的新型单原子分散催化剂.最近,光化学方法由于其步骤简单和制备条件温和的优点而引起了广泛关注.在之前的研究中我们揭示了光化学法制备单原子分散催化剂的分子机制.我们发现,紫外光照的作用在于将二氧化钛纳米片表面的乙二醇基激发生成乙二醇自由基,后者不仅有利于氯钯酸根中氯离子的脱除,还可通过Pd–O键将钯原子锚定在载体上,形成了独特的"钯-乙二醇-二氧化钛"的界面.根据对光化学法制备技术的理解,本文将光化学法拓展到其他二氧化钛体系,成功制备了基于(001)面暴露的锐钛矿纳米晶和商用二氧化钛P25的单原子分散钯催化剂.通过吸附和紫外光照,可以在室温下简单地制备单原子分散钯催化剂.扩展X射线吸收精细结构实验表明,紫外光照的作用是促进钯原子上氯离子的离去和更多Pd–O键的形成.与通过其它方法制备的催化剂相比,光化学法制备的两种Pd1/TiO2催化剂在苯乙烯的催化氢化反应中表现出更高的活性和稳定性.转化频率TOF为商用Pd/C催化剂的6倍.单原子分散催化剂为研究催化反应中复杂的界面效应提供了理想的模型体系.由于CO的催化氧化反应性能对金属活性中心的化学配位环境高度敏感,因此我们选择它作为模型反应以研究光化学法制备的单原子分散催化剂之间的差异.结果发现,两种载体制备的单原子分散钯催化剂都具有很好的催化CO氧化低温活性,373 K时CO转化率均可高达96%.其中,负载在(001)面暴露的锐钛矿纳米晶的催化剂在343 K时TOF高达6.7×10–3 s–1,比有文献报道的活性最高的Pd/La-修饰Al2O3催化剂在相同条件下高3.3倍,是目前Pd基催化剂在催化CO氧化反应中的活性最佳记录.这可能是由于二氧化钛的载体效应引起的.虽然两种催化剂的催化活性相当,但Pd/P25的表观活化能比Pd/TiO2(NC)高一倍左右.两种催化剂的金属都以单原子态分布,催化CO氧化反应的机制却可能完全不同.这说明单原子分散催化剂的性能与载体的表面性质密切相关.本文为单原子催化中载体的选择和原子尺度的界面调控提供了新的研究思路.  相似文献   

5.
单原子分散催化剂由于其独特的结构和性质,在催化研究中已展现出巨大的潜力,成为了催化研究的前沿领域.传统的催化剂制备方法(例如共沉积,浸渍法等)在单原子分散催化剂的制备中卓有成效,但不断涌现的新方法能够制备出传统方法不能制备的新型单原子分散催化剂.最近,光化学方法由于其步骤简单和制备条件温和的优点而引起了广泛关注.在之前的研究中我们揭示了光化学法制备单原子分散催化剂的分子机制.我们发现,紫外光照的作用在于将二氧化钛纳米片表面的乙二醇基激发生成乙二醇自由基,后者不仅有利于氯钯酸根中氯离子的脱除,还可通过Pd–O键将钯原子锚定在载体上,形成了独特的"钯-乙二醇-二氧化钛"的界面.根据对光化学法制备技术的理解,本文将光化学法拓展到其他二氧化钛体系,成功制备了基于(001)面暴露的锐钛矿纳米晶和商用二氧化钛P25的单原子分散钯催化剂.通过吸附和紫外光照,可以在室温下简单地制备单原子分散钯催化剂.扩展X射线吸收精细结构实验表明,紫外光照的作用是促进钯原子上氯离子的离去和更多Pd–O键的形成.与通过其它方法制备的催化剂相比,光化学法制备的两种Pd_1/TiO_2催化剂在苯乙烯的催化氢化反应中表现出更高的活性和稳定性.转化频率TOF为商用Pd/C催化剂的6倍.单原子分散催化剂为研究催化反应中复杂的界面效应提供了理想的模型体系.由于CO的催化氧化反应性能对金属活性中心的化学配位环境高度敏感,因此我们选择它作为模型反应以研究光化学法制备的单原子分散催化剂之间的差异.结果发现,两种载体制备的单原子分散钯催化剂都具有很好的催化CO氧化低温活性,373 K时CO转化率均可高达96%.其中,负载在(001)面暴露的锐钛矿纳米晶的催化剂在343 K时TOF高达6.7×10~(–3) s~(–1),比有文献报道的活性最高的Pd/La-修饰Al_2O_3催化剂在相同条件下高3.3倍,是目前Pd基催化剂在催化CO氧化反应中的活性最佳记录.这可能是由于二氧化钛的载体效应引起的.虽然两种催化剂的催化活性相当,但Pd/P25的表观活化能比Pd/TiO_2(NC)高一倍左右.两种催化剂的金属都以单原子态分布,催化CO氧化反应的机制却可能完全不同.这说明单原子分散催化剂的性能与载体的表面性质密切相关.本文为单原子催化中载体的选择和原子尺度的界面调控提供了新的研究思路.  相似文献   

6.
金属催化剂在工业、环境、能源以及生物等过程具有重要的应用.设计具有特定活性、环境友好型以及室温下具有反应活性的催化剂,需要在分子水平对金属催化剂的基元步骤,活性位点的结构以及催化反应微观机理有充分的认识.然而,由于宏观催化剂表面结构异常复杂,催化反应常受到溶剂、压力、金属颗粒团聚、催化剂表面缺陷等因素的干扰,利用现有实验仪器,从微观角度探索金属催化反应机理仍具有较大挑战,因此,对金属催化剂活性位的结构以及反应微观机理的认识还不十分清楚.质谱方法结合现代量子化学理论计算,提供了在气相条件下实验探索化学反应微观机理的有力工具,团簇反应可在隔离外界条件、可控以及可重复条件下进行,可以排除一些难以控制因素的干扰,可在化学键和分子结构水平认识金属活性位的结构以及催化反应的微观机理.气相金属团簇离子可用多种实验方法制备,与反应物分子反应后可利用多种质谱仪器探测,根据实验上所得的具有反应活性的团簇,结合现代量子化学理论模拟,得到金属催化反应的基元步骤以及微观反应机理信息,所得反应机理信息为宏观催化剂的设计提供重要理论研究基础.本综述总结了团簇实验上已经探测到的金属单原子离子、金属团簇、金属氧化物团簇和金属化合物催化的气相反应.反应物分子囊括了大量的无机和有机分子,包括CO,H_2,CH_4,C_2H_2,C_2H_4,C_6H_6,CH_3OH,HCOOH,CH_3COOH等.本综述主要介绍了以下三类催化反应:(1)CO催化氧化;(2)CH4催化转化;(3)催化脱羧反应,并重点关注贵金属单原子掺杂团簇独特的催化反应性.单原子催化剂可最大限度地利用有限的贵金属.在化学反应方面,单原子催化剂具有特异的反应活性,选择性以及稳定性.本综述对气相团簇反应中报道的两个重要的贵金属单原子掺杂团簇的催化反应进行了详细介绍:(1)金原子掺杂的Au Al_3O_(3-5)~+团簇为首次报道的可以利用分子氧催化氧化CO的团簇单原子催化剂,我们对Au原子起催化作用的本质原因进行了介绍:(2)铂原子掺杂的Pt Al_3O_(5-7)~-团簇能利用分子氧催化氧化CO,该研究提出了"电负性阶梯"效应来解释Pt原子催化的微观机理,且此效应有望对大部分贵金属适用.此外,本综述对CO催化氧化反应和CH_4催化转化反应的研究现状以及尚未解决的问题进行了剖析.相比CO的催化氧化反应,科学家对CH4催化转化反应机理的认识还不够深入,还需要进一步实验研究,而团簇单原子催化剂有望在此领域有所突破.  相似文献   

7.
酶催化与金属单原子催化结合,理论上可开发众多新的绿色化学合成反应,是催化科学的一个重要研究前沿方向.酶-金属单原子复合催化剂兼具酶和金属单原子催化剂的高效、高立体选择性等优点.目前已成功构建的单原子分散金属催化剂的载体一般为刚性的无机载体,利用柔性蛋白分子作为载体制备单原子分散金属催化剂的技术瓶颈问题在于蛋白分子具有柔性、构象易变的特点,并且氨基酸残基与金属原子之间的相互作用力较弱,蛋白分子表面的氨基酸残基难以与金属单原子稳定结合.针对这样一个关键技术瓶颈问题,我们建立了酶-金属单原子复合催化剂的光化学合成方法.本文研究酶-金属单原子复合催化剂在生物-化学一锅级联反应合成联苯类手性醇中的催化性能.联苯类手性醇是手性药物的重要中间体,通常通过多步化学法或生物-化学级联法制备.相比于多步化学法,利用生物-化学级联反应制备联苯类手性化合物具有反应条件温和、选择性高、环境友好等优点.采用光化学法合成脂肪酶-钯单原子复合催化剂(Pd1/CALB-Pluronic),通过球差矫正扫描透射电镜和扩展X射线吸收精细结构表征复合催化剂的形貌.首先研究了Pd1/...  相似文献   

8.
利用溶液法结合高温煅烧处理合成MgO载体,通过浸渍法制备Pd/MgO催化剂并对其进行CO氧化偶联制草酸二甲酯催化性能研究。通过X射线粉末衍射、CO2程序升温脱附、比表面仪、热重分析、扫描电镜、透射电镜和微型催化评价装置对合成的样品进行结构和性能表征。结果表明,合成的MgO载体是一种Lewis碱性很强的纳米片结构,Pd纳米颗粒高度分散在MgO载体上,粒径小且分布均一。此MgO纳米片作为载体制备的Pd/MgO催化剂在较低的Pd负载量(0.5%)下表现出优异的CO氧化偶联催化性能,在反应温度130℃时CO单程转化率高达65%,草酸二甲酯选择性96%,稳定性超过100 h,明显越于工业催化剂(Pd/α-Al2O3),具有潜在的工业应用前景。  相似文献   

9.
将孤立的Pd原子分散到ZnO纳米线(NWs)上作为单原子催化剂(SACs),并考察了它们在若干反应中的催化性能.Pd1/ZnO SAC对甲醇蒸汽重整制氢反应表现出高的活性、稳定性和CO2选择性.该催化剂体系对CO和H2的氧化也具有高活性,但在富氢物料中CO优先氧化反应中的催化剂性能较差,这主要是由于在ZnO负载的Pd1原子上H2氧化的强竞争反应所致.常压下在Pd1/ZnO SAC上就可发生逆水汽变换反应.该系列催化反应测试结果清楚地表明,选择合适金属与载体对开发分子催化转化用单原子催化剂至关重要.  相似文献   

10.
化学选择性是评价催化剂性能最重要的参数之一,它直接决定了产物的经济价值及后续的分离成本.传统的负载型金属催化剂由于其金属粒径分布不均,且不同原子数组成的粒子通常具有特征产物选择性,从而限制化学选择性的提高;另一方面,对于金属多原子活性中心,反应物在催化剂表面可以存在多种吸附构型进而衍化为不同产物,产物可控性差.因此,获得金属尺寸均一,且具有原子分散的活性中心,即单原子催化剂,成为官能团多相催化转化高选择性的迫切需求.本课题组通过400 oC还原1%-Pd/ZnO得到PdZn金属间化合物,依据其规律排布的Pd-Zn-Pd单元获得Pd基单原子催化剂.该催化剂在乙烯化工中少量乙炔的加氢转化反应中获得令人欣喜的催化性能——兼具有乙炔的高转化率和乙烯的高选择性.结合微量吸附量热、理论计算等表征,Pd活性中心在PdZn金属间化合物中的特殊空间排布是其优异催化性能的根源,即乙炔以较强的σ键吸附在两个相邻的单Pd金属中心,易吸附活化加氢生成乙烯,而乙烯则吸附于单Pd金属中心,较弱的π键形式吸附有利于其脱附避免过渡加氢.基于前期研究,构筑具有均一单金属中心的负载型单原子催化剂是获得高选择性的另一有效方法,且较之于PdZn金属间化合物催化剂,该类单原子催化剂兼具有原子利用率最大化的优点.本文采用等体积浸渍法制备Pd/ZnO催化剂,通过降低Pd金属含量(1 wt%→0.1 wt%→0.01 wt%)并在较低的温度下(100 oC)还原(H2-TPR表明高温还原形成PdZn金属间化合物型合金)得到负载型单原子催化剂(Pd1/ZnO SAC).高分辨电镜结果表明,当Pd负载量由1%降至0.1%,金属纳米颗粒的粒径尺寸显著降低,而在0.01%-Pd/ZnO催化剂表面,Pd活性中心则以单原子状态分散于载体ZnO表面.X-射线吸收光谱及电子能谱表明,随着负载量的降低,Pd活性物种具有更高的正电性.该催化剂在乙炔选择性加氢反应中表现出更加优越的催化性能,具有与PdZn催化剂相当的高选择性,而更优的比活性.这归结于Pd1/ZnO单原子催化剂的Pdδ+单原子活性中心有助于其与乙炔的静电相互作用并吸附活化加氢生成乙烯,并促使乙烯以较弱的π键吸附,从而易于从催化剂表面脱附获得高选择性.  相似文献   

11.
单原子催化剂(SACs)是指金属以单原子形式均匀分散在载体上形成的具有优异催化性能的催化剂.与传统载体型催化剂相比,SACs具有活性高、选择性好及贵金属利用率高等优点,在氧化反应、加氢反应、水煤气变换、光催化制氢以及电化学催化等领域都具有广泛应用,是目前催化领域的研究热点之一.常见的SACs制备方法有共沉淀法、浸渍法、置换反应法、原子层沉积法以及反奥斯瓦尔德熟化法等.实验及理论研究表明,单原子催化剂高的活性和选择性可归因于活性金属原子和载体之间的相互作用及由此引起的电子结构改变.载体是影响单原子催化剂性能的重要因素之一.目前常用的SACs载体有金属氧化物、二维材料和金属纳米团簇等,本文着重综述了这三种负载型SACs的制备、表征、催化性能及催化机理,并概述了SACs未来可能的发展方向和应用.研究表明,共沉淀法、湿浸渍法和反奥斯瓦尔德熟化法等方法可用来制备氧化物负载的SACs.高角环形暗场像-扫描透射电子显微镜(HAADF-STEM)表明金属是以单原子形式均匀分散在载体上,近边X射线吸收精细结构(XANES)结果表明金属原子与载体之间存在着强相互作用.实验和理论研究均表明该类催化剂在CO氧化反应、水煤气转化及乙炔加氢生成乙烯等反应中具有高的催化活性和稳定性.采用化学气相沉积法和原子层沉积法等方法可以将金属原子稳定地负载在具有缺陷活性位点的石墨烯、MXene及六方氮化硼等二维材料上并相应制备出SACs.X射线吸收精细结构谱(EXAFS)和XANES分析表明样品中金属以单原子形式存在,而且金属原子与载体之间也存在着强相互作用,理论计算表明金属原子与二维载体之间的电荷转移是SACs活性高的主要原因.置换反应法和连续还原法是制备溶胶型SACs的有效方法,其中置换反应法可将活性金属原子原位组装在金属模板团簇的顶点位置,连续还原法可将活性原子负载于金属模板团簇的表面.DFT计算表明活性原子和金属模板团簇之间存在电荷转移效应,这是溶胶型SACs具有非常高的催化活性的主要原因.SACs下一步的研究方向可能是:(1)研究开发新型SACs,尽可能提高催化剂中活性金属原子的含量;(2)深入研究SACs的结构、活性以及催化机理之间的关系;(3)尝试将SACs大规模应用于工业催化.  相似文献   

12.
用黄磷作原料,制备了具有不同Pd-P原子比的碳载Pd-P(Pd-P/C)催化剂,并且使用X射线衍射(XRD)和能量色散X射线光谱仪(EDX)等手段对制备的催化剂进行了表征,总结了P含量对Pd-P合金纳米粒子的粒径和晶体结构的影响。电化学测试结果表明,甲酸在Pd/C、Pd1P6/C 和Pd1P8/C催化剂上,氧化峰峰电位由低到高依次为Pd1P6/C ﹤Pd1P8/C﹤Pd/C,电化学稳定性顺序为Pd1P6/C >Pd1P8/C>Pd/C,Pd1P6/C 催化剂对甲酸氧化的催化性能最佳,适量的P掺杂能够增强Pd/C催化剂对甲酸氧化的电催化活性和稳定性,因此,Pd-P/C催化剂是一类具有应用前景的直接甲酸燃料电池(DFAFC)阳极催化剂。  相似文献   

13.
采用聚乙烯吡咯烷酮(PVP)保护的化学共还原法制备了Pd/Co双金属纳米颗粒, 研究了PVP及还原剂(NaBH4)的用量、金属盐浓度、金属比例等对Pd/Co双金属纳米颗粒催化NaBH4制氢性能的影响. 透射电子显微镜(TEM)的结果表明, 所制备的Pd/Co双金属纳米颗粒的平均粒径在1.5-2.8 nm之间. Pd/Co双金属纳米颗粒(BNPs)的催化活性远高于Pd与Co单金属纳米颗粒的活性; 当Pd/Co的理论原子比为1/9时, 双金属纳米颗粒的催化活性最高可达15570 mol·mol-1·h-1 (文中纳米颗粒的催化活性均为每摩尔Pd的活性). 密度泛函理论(DFT)的计算结果表明, Pd原子与Co原子之间发生电荷转移, 使得Pd原子带负电而Co原子带正电, 荷电的Pd和Co原子进而成为催化反应的活性中心. 所制备的Pd/Co双金属纳米颗粒具有很好的催化耐久性, 即使重复使用5次后, 该催化剂仍具有较高的催化活性, 且使用后的纳米颗粒催化剂也没有出现团聚现象. 双金属纳米颗粒催化NaBH4水解反应的活化能约为54 kJ·mol-1.  相似文献   

14.
单原子催化剂(SACs)是指金属以单原子形式均匀分散在载体上形成的具有优异催化性能的催化剂.与传统载体型催化剂相比,SACs具有活性高、选择性好及贵金属利用率高等优点,在氧化反应、加氢反应、水煤气变换、光催化制氢以及电化学催化等领域都具有广泛应用,是目前催化领域的研究热点之一.常见的SACs制备方法有共沉淀法、浸渍法、置换反应法、原子层沉积法以及反奥斯瓦尔德熟化法等.实验及理论研究表明,单原子催化剂高的活性和选择性可归因于活性金属原子和载体之间的相互作用及由此引起的电子结构改变.载体是影响单原子催化剂性能的重要因素之一.目前常用的SACs载体有金属氧化物、二维材料和金属纳米团簇等,本文着重综述了这三种负载型SACs的制备、表征、催化性能及催化机理,并概述了SACs未来可能的发展方向和应用.研究表明,共沉淀法、湿浸渍法和反奥斯瓦尔德熟化法等方法可用来制备氧化物负载的SACs.高角环形暗场像-扫描透射电子显微镜(HAADF-STEM)表明金属是以单原子形式均匀分散在载体上,近边X射线吸收精细结构(XANES)结果表明金属原子与载体之间存在着强相互作用.实验和理论研究均表明该类催化剂在CO氧化反应、水煤气转化及乙炔加氢生成乙烯等反应中具有高的催化活性和稳定性.采用化学气相沉积法和原子层沉积法等方法可以将金属原子稳定地负载在具有缺陷活性位点的石墨烯、MXene及六方氮化硼等二维材料上并相应制备出SACs.X射线吸收精细结构谱(EXAFS)和XANES分析表明样品中金属以单原子形式存在,而且金属原子与载体之间也存在着强相互作用,理论计算表明金属原子与二维载体之间的电荷转移是SACs活性高的主要原因.置换反应法和连续还原法是制备溶胶型SACs的有效方法,其中置换反应法可将活性金属原子原位组装在金属模板团簇的顶点位置,连续还原法可将活性原子负载于金属模板团簇的表面.DFT计算表明活性原子和金属模板团簇之间存在电荷转移效应,这是溶胶型SACs具有非常高的催化活性的主要原因.SACs下一步的研究方向可能是:(1)研究开发新型SACs,尽可能提高催化剂中活性金属原子的含量;(2)深入研究SACs的结构、活性以及催化机理之间的关系;(3)尝试将SACs大规模应用于工业催化.  相似文献   

15.
近年来,由有机配体保护的原子精确金属团簇在合成方面已取得了重要进展,其独特的原子结构对一些化学反应产生独特的催化效果.原子精确的团簇催化剂明显不同于纳米颗粒催化剂和单原子催化剂,是一种关联均相和多相的、原子数目确定、尺寸均一、结构精确的新型催化剂.从原子尺度上精确构筑团簇催化剂,探究亚纳米尺度的微观结构对催化性能的影响,为常规催化剂所未能解决的关键科学问题提供解决的机会,为在分子尺度上揭示催化作用机制以及准确关联催化剂结构与催化性能提供新的研究体系,具有重要的科学研究意义.本文设计和使用了三种结构精确的金团簇催化剂,即Au_(25)(PPh_3)_(10)(SC_2H_4Ph)_5Cl_2, Au_(38)(SC_2H_4Ph)_(24)和Au_(25)(SC_2H_4Ph)_(18),分别由二十面体结构的Au_(13)单元通过中心顶点融合、面融合、体相融合形成的(简写为Au_(vf)、Au_(ff)和Au_(bf)),详细研究了这三个金团簇催化剂在二十面体Au_(13)单元的结构融合过程中,其催化活性的演变规律.在催化吡咯烷与O_2反应制备γ-丁内酰胺反应中,金团簇催化剂的催化活性顺序为Au_(bf)Au_(ff)Au_(vf),表明这三个金团簇中Au_(13)单元的结构随着点、面、体的融合,其催化活性随之增加.同时研究发现,对于同一个Au团簇催化剂,其表面硫醇配体的烷基链越短,其催化活性越高,这主要是由于短链硫醇分子的空间位阻较小,吡咯烷分子更容易进入催化剂的金表面,接触到活性位点,进行催化反应.实验表明,三个团簇金原子均带正电荷,正价金物种可能是催化吡咯烷与O_2反应的催化活化物种.研究发现, Au_(bf)团簇表面的活性位数目高于Au_(ff)和Au_(vf)团簇的,因此Au_(bf)的催化活性最高;同时,团簇表面配体的烷基链越短,其表面活性位数目也越多,这也进一步解释了表面硫醇配体的烷基链越短,其相应的金团簇催化剂的催化活性越高的原因.吡咯烷与O_2在金团簇上反应的可能路径为O_2在Au活性位上裂解的O原子和吡咯烷β-H转移至Au活性位的β-H反应脱水后形成亚胺,亚胺经过水解进一步氧化得到产物.这项研究将为在原子层次上调变金属团簇催化剂的结构进而改变其催化性能提供新的思路,对精准设计和构筑高效催化剂具有一定的科学指导意义.  相似文献   

16.
负载型纳米贵金属催化剂是用于多相催化反应的重要的催化剂之一,也是各国催化科学与技术研发的重点,其工业应用也越来越广泛.理论和实验的研究结果均表明,当载体表面的金属粒子尺寸减小至亚纳米级乃至更小的低配位、不饱和的原子团簇时,它们常常成为诱发催化反应的活性中心,呈现更高的催化活性和选择性.将负载的金属尺寸由纳米量级减小至分散的金属团簇甚至单原子而使每个原子成为反应的活性位点已成为研究的重点.最近,由张涛等首次合成的单原子催化剂(SAC)Pt1/FeOx引起了国内外催化及表面科学工作者的极大关注.单原子催化剂作为连接均相催化剂和多相催化剂的桥梁,不仅具有非均相催化剂的稳定、易于与反应体系分离、易表征等优点,而且具有均相催化剂活性中心结构均一、活性中心原子利用率百分之百等优点.一方面,单原子催化剂给多相催化领域注入了新的活力,另一方面也更有利于运用量子与计算化学的研究方法建立与实验相匹配的理论模型并从原子水平上进一步理解多相催化反应的微观作用机理.实验和理论的研究结果表明,其它单原子催化剂如Ir1/FeOx,Au1/FeOx和Ni1/FeOx催化CO氧化反应表现出不同的活性.然而,底物FeOx中的Fe同样是第VIII族中的3d过渡金属,却在低温下对CO氧化反应没有催化活性.我们围绕这一问题,重点研究了底物FeOx在负载单原子Pt1前后催化CO氧化的反应机理和活性,解释了单原子催化剂Pt1/FeOx相比于底物FeOx为何具有如此高的催化活性的原因.我们采用Vienna Ab-initio Simulation Package(VASP)从头算模拟软件和密度泛函理论(DFT)的广义梯度近似(GGA)进行了理论计算.其中,选择PBE泛函描述体系的交换关联相互作用,用投影缀加波(PAW)赝势基组方法描述体系中的电子和离子实之间的相互作用,对Fe原子采用了DFT+U方法进行d电子强相关校正,并使用Dimer计算方法搜寻反应过渡态.研究结果表明,底物FeOx中氧空位的再生伴随第二个CO2分子从催化剂表面脱附的过程需要较高的活化势垒(1.09 eV),这一过程是整个CO氧化反应的决速步.与此相比较,Pt1/FeOx催化剂中,由于Pt原子代替了表面Fe原子,导致电子结构及性质的显著变化,有利于CO的活化、氧化和CO2的脱附.我们从电子能量态密度(DOS)和Bader电荷分析及模型分子团簇的轨道相互作用的角度进一步分析了两种催化剂存在差异的本质;揭示了单原子催化剂Pt1/FeOx中Pt1和底物FeOx之间的相互作用的机理及催化剂表面Pt单原子在催化反应过程中的关键作用.  相似文献   

17.
单层分散型Pd/Ni双金属催化剂的制备及其催化加氢性能   总被引:1,自引:0,他引:1  
通过置换反应制备了Pd/Ni双金属催化剂,利用X射线衍射、CO化学吸附和吸附H2的程序升温脱附对其进行了表征,并测定了该催化剂对环己烯、苯乙烯和丙酮气相加氢反应的催化性能.结果发现,在这种催化剂中Pd原子单层分散在金属Ni的表面,因而该催化剂表现出比浸渍法制备的相同Pd含量的Pd/Ni-im和Pd/-γAl2O3催化剂更高的催化加氢活性.  相似文献   

18.
杨丹  祝艳 《催化学报》2021,42(2):245-250,后插1-后插5
近年来,由有机配体保护的原子精确金属团簇在合成方面已取得了重要进展,其独特的原子结构对一些化学反应产生独特的催化效果.原子精确的团簇催化剂明显不同于纳米颗粒催化剂和单原子催化剂,是一种关联均相和多相的、原子数目确定、尺寸均一、结构精确的新型催化剂.从原子尺度上精确构筑团簇催化剂,探究亚纳米尺度的微观结构对催化性能的影响,为常规催化剂所未能解决的关键科学问题提供解决的机会,为在分子尺度上揭示催化作用机制以及准确关联催化剂结构与催化性能提供新的研究体系,具有重要的科学研究意义.本文设计和使用了三种结构精确的金团簇催化剂,即Au25(PPh3)10(SC2H4Ph)5Cl2,Au38(SC2H4Ph)24和Au25(SC2H4Ph)18,分别由二十面体结构的Au13单元通过中心顶点融合、面融合、体相融合形成的(简写为Auvf、Auff和Aubf),详细研究了这三个金团簇催化剂在二十面体Au13单元的结构融合过程中,其催化活性的演变规律.在催化吡咯烷与O2反应制备γ-丁内酰胺反应中,金团簇催化剂的催化活性顺序为Aubf>Auff>Auvf,表明这三个金团簇中Au13单元的结构随着点、面、体的融合,其催化活性随之增加.同时研究发现,对于同一个Au团簇催化剂,其表面硫醇配体的烷基链越短,其催化活性越高,这主要是由于短链硫醇分子的空间位阻较小,吡咯烷分子更容易进入催化剂的金表面,接触到活性位点,进行催化反应.实验表明,三个团簇金原子均带正电荷,正价金物种可能是催化吡咯烷与O2反应的催化活化物种.研究发现,Aubf团簇表面的活性位数目高于Auff和Auvf团簇的,因此Aubf的催化活性最高;同时,团簇表面配体的烷基链越短,其表面活性位数目也越多,这也进一步解释了表面硫醇配体的烷基链越短,其相应的金团簇催化剂的催化活性越高的原因.吡咯烷与O2在金团簇上反应的可能路径为O2在Au活性位上裂解的O原子和吡咯烷β-H转移至Au活性位的β-H反应脱水后形成亚胺,亚胺经过水解进一步氧化得到产物.这项研究将为在原子层次上调变金属团簇催化剂的结构进而改变其催化性能提供新的思路,对精准设计和构筑高效催化剂具有一定的科学指导意义.  相似文献   

19.
通过静电吸引策略将具有高度分散性的原子精确纳米团簇[Pd_3Cl(PPh_2)_2(PPh_3)_3]+(Pd_3Cl)负载在介孔SBA-15棒上。结构明确的Pd_3Cl/SBA-15催化剂在以水作为溶剂以及温和的反应条件下对催化Sonogashira碳-碳偶联反应展现了较好的催化性能以及循环性。在此基础上,我们研究了Pd_3Cl团簇结构与性能之间的关系,并证实内核的Pd~(δ+)(0δ2)与配体之间的协同效应是催化反应的关键。  相似文献   

20.
正电性磁性氧化铁胶粒负载钯催化的Suzuki偶联反应   总被引:1,自引:0,他引:1  
发展了一种超顺磁性Fe3O4纳米粒子负载Pd0的简易方法. 利用Fe3O4溶胶带正电荷的特性, 将负离子 通过静电作用吸附在Fe3O4胶体粒子表面( /Fe3O4), 以抗坏血酸(Vc)进一步还原即得到载有金属Pd团簇的Fe3O4胶体粒子(Pd0/Fe3O4). 该磁性载体负载的Pd催化剂对Suzuki反应表现出良好的催化活性, 且在反应后, 可方便地通过永久磁铁将催化剂从反应体系中分离出来, 进行循环使用. 试验表明, 该催化剂在循环使用五次后反应活性无明显下降. 进一步试验发现, 这种磁性纳米粒子负载的金属钯对一系列卤代芳烃的Suzuki偶联反应均表现出较优的催化活性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号