首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Ohlmeier S  Scharf C  Hecker M 《Electrophoresis》2000,21(17):3701-3709
The genomic sequence of Bacillus subtilis, which is the best studied Gram-positive bacterium, enabled us to obtain a theoretical two-dimensional (2-D) map, demonstrating that about one-third of this proteome has a theoretical alkaline isoelectric point (pI). This represents an important part of the entire proteome, which is not detectable in conventional 2-D gels (pH range 4-7). Sequence analysis revealed that 91% of the ribosomal proteins and a high amount of theoretical membrane proteins should be localized in the alkaline pH range requiring different protein extraction procedures. In order to find the pH range which gives the best resolution results for the alkaline proteins of B. subtilis, immobilized pH gradients (IPGs) with different pH ranges (pH 6-10, 6-11, 4-12, 9-12, and 3-10) were tested and optimized for IPG 4-12. Here we present a version of a first alkaline master 2-D gel for B. subtilis, which is a further complement of the already existing master gel (pH 4-7) in the Sub2D database. Almost 150 spots could be detected and 41 proteins have already been identified.  相似文献   

2.
Proteomics requires a large-scale, simultaneous separation of proteins from a mixture, assessment of the relative abundance of these molecules, and identification and characterization of each component. In 2-D PAGE separations, the best method of choice for protein analysis, separation of all the proteins present in the sample is still far to be achieved and comigrating proteins in the same spot are in general present. A statistical estimation of the degree of spot overlapping present in a 2-D PAGE separation is here described: for different conditions of spot overcrowding in the map, the degree of overlapping can be quantified in terms of purity degree of each spot or percentage of proteins that will appear in the map as a single spot. A computer simulation approach is described: it is based on the protein separation pattern present in the experimental maps. The results thus obtained are compared to a theoretical model (statistical degree of peak overlapping model) based on random spot position. The described procedures were applied to an experimental reference map of human plasma. The severity of spot overlapping in 2-D PAGE maps is estimated and the influence of different experimental conditions (strip dimension, detector system performance, pI range) is discussed. These informations are useful to quantitatively estimate the degree of error associated with identification and quantitation of each protein and to set-up experimental conditions which will increase resolution and greatly decrease the probability of spot overlapping.  相似文献   

3.
The whole genome sequences of Helicobacter pylori strain 26695 have been reported. Whole cell proteins of H. pylori strain 26695 cells were obtained and analyzed by two-dimensional electrophoresis, using immobilized pH gradient strips. The most abundant proteins were shown in the region of pI 4.0-9.5 with molecular masses from 10 to 100 kDa. Soluble proteins were precipitated by the use of 0-80% saturated solutions of ammonium sulfate. Soluble proteins precipitated by the 0-40% saturations of ammonium sulfate produced similar spot profiles and their abundant protein spots had acidic pI regions. However, a number of soluble proteins precipitated by more than 60% saturation of ammonium sulfate were placed in the alkaline pI regions, compared to those precipitated by 40% saturation. In addition, we have performed an extensive proteome analysis of the strain utilizing peptide MALDI-TOF-MS. Among the 345 protein spots processed, 175 proteins were identified. The identified spots represented 137 genes. One-hundred and fifteen proteins were newly identified in this study, including DNA polymerase III beta-subunit. These results might provide guidance for the enrichment of H. pylori proteins and contribute to construct a master protein map of H. pylori.  相似文献   

4.
A molecular weight map of the protein content of ES2 human clear cell ovarian carcinoma cells has been produced using a two-dimensional (2-D) liquid separations/mass mapping technique. This method uses a 2-D liquid separation of proteins from whole cell lysates coupled on-line to an electrospray ionization-time of flight (ESI-TOF) mass spectrometer to map the accurate intact molecular weight (M(r)) of the protein content of the cells. The two separation dimensions involve the use of liquid isoelectric focusing as the first phase and nonporous silica reversed-phase high-performance liquid chromatography (HPLC) as the second phase of separation. The detection by ESI-TOF-MS provides an image of pI versus M(r) analogous to 2-D gel electrophoresis. Each protein is then identified based upon matrix-assisted laser desorption/ionization (MALDI)-TOF-MS peptide mapping and intact M(r) so that a standard map is produced against which other ovarian carcinoma cell lines can be compared. The accurate intact M(r) together with the pI fraction, and peptide map serve to tag the protein for future interlysate comparisons. An internal standard is also used to provide a means for quantitation for future interlysate studies. In the ES2 cell line under study it is shown that nearly 900 M(r) bands are detected over 17 pI fractions from pH 4 to 12 and a M(r) range up to 85 kDa and that around 290 of these bands can be identified using mass spectrometric based techniques. The protein M(r) is detected within an accuracy of 150 ppm and it is shown that many of the proteins in this human cancer sample are modified compared to the database. The protein M(r) map may serve as a highly reproducible standard Web-based method for comparing proteins from related human cell lines.  相似文献   

5.
Epithelial tissue lining the inner side of the urinary bladder is the most common target for bladder cancer-related diseases. Bladders of freshly slaughtered pigs were utilised for a comprehensive analysis of the proteome and phosphoproteome of bladder epithelial cells. Following protein separation by 2-D gel electrophoresis and identification by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF-MS) the first proteome and phosphoproteome maps of pig urinary bladder epithelial cells (PUBEC) were established. A total of 120 selected protein spots were identified. By using the La(3+) enrichment method further developed in our laboratory we identified 31 phosphoproteins with minimal contamination by non-phosphopeptides. The 2-DE map of pig urothelial cells may prove as a useful tool for studies on uroepithelial biology, and the analysed phosphoproteins expression pattern, together with the whole cell proteome, will be helpful for identifying the proteins involved in bladder-related diseases.  相似文献   

6.
By proving the opportunity to visualize several hundred proteins at a time, two-dimensional (2-D) gel electrophoresis is an important tool for proteome research. In order to take advantage of the full potential of this technique for yeast studies, we have undertaken a systematic identification of yeast proteins resolved by this technique. We report here the identification of 92 novel protein spots on the yeast 2-D protein map. These identifications extend the number of protein spots identified on our yeast reference map to 401. These spots correspond to the products of 279 different genes. They have been essentially identified by three methods: gene overexpression, amino acid composition and mass spectrometry. These data can be accessed on the Yeast Protein Map server (htpp://www.ibgc.u-bordeaux2.fr/YPM).  相似文献   

7.
Towards a two-dimensional proteome map of Mycoplasma pneumoniae   总被引:4,自引:0,他引:4  
A Proteome map of the bacterium Mycoplasma pneumoniae was constructed using two-dimensional (2-D) gel electrophoresis in combination with mass spectrometry (MS). M. pneumoniae is a human pathogen with a known genome sequence of 816 kbp coding for only 688 open reading frames, and is therefore an ideal model system to explore the scope and limits of the current technology. The soluble protein content of this bacterium grown under standard laboratory conditions was separated by 1-D or 2-D gel electrophoresis applying various pH gradients, different acrylamide concentrations and buffer systems. Proteins were identified using liquid chromatography-electrospray ionization ion trap and matrix-assisted laser desorption/ionization-MS. Mass spectrometric protein identification was supported and controlled using N-terminal sequencing and immunological methods. So far, proteins from about 350 spots were characterized with MS by determining the molecular weights and partial sequences of their tryptic peptides. Comparing these experimental data with the DNA sequence-derived predictions it was possible to assign these 350 proteins to 224 genes. The importance of proteomics for genome analysis was shown by the identification of four proteins, not annotated in the original publication. Although the proteome map is still incomplete, it is already a useful reference for comparative analyses of M. pneumoniae cells grown under modified conditions.  相似文献   

8.
This paper reports the development of new methods for mathematical characterization of effects of different toxic agents on the cellular proteome. We describe numerical characterization of proteomics maps based on mathematical invariants. A graph is first associated with a proteomics map by considering partial ordering of spots on 2-D gels by ordering proteins with respect to the mass and the charge, the two properties by which proteins are separated. The graph is then embedded over the map, and several graph theoretical invariants have been constructed. In particular we consider invariants that can be extracted from the Euclidean distance-adjacency matrix of the embedded graph, in which only Euclidean distances between adjacent vertices of a graph are considered. The approach is illustrated using proteomics patterns of normal liver cells of rats and those derived from liver cells of animals exposed to four peroxisome proliferators. In contrast to direct comparison of spot abundance our approach incorporates information on spots locations. The difference between the two approaches is that in the first case only changes in abundances are considered as a measure of perturbation of the proteome map, but in the second case not only the charge but also the mass of proteins are used for ordering protein spots.  相似文献   

9.
A three-dimensional (3-D) contour map format has been developed to display the large amount of data continuously collected throughout an on-line capillary separation using an ion trap storage/reflectron time-of-flight detector (IT/reTOF). The resulting data are displayed on a single computer screen with a mass-to-charge ratio value-elution time-intensity representation. The intensity of various components is represented by 16 different colors so that the mass-to-charge ratio value, the elution time, and the intensity can be conveniently determined for each component. In addition, the mass spectrum and total ion chromatogram or total ion electropherogram (TIE) are shown on the same screen as the 3-D map that enables the correlation of a single spot in the 3-D map to the peaks in the TIE and the corresponding mass spectrum. The 3-D map has been used to identify various posttranslational modification sites of bovine myelin basic protein charge isomers, where the datafiles of tryptic digests of proteins analyzed by capillary electrophoresis/mass spectrometry were processed by this software and a comparison could be performed among the isoforms. The feature of in-screen integration over both the separation domain and the mass domain makes the acquisition of the selected ion chromatogram very convenient and greatly improves the ability to detect modified components present in low amounts.  相似文献   

10.
This paper presents a comparative proteomic analysis of human maternal plasma and amniotic fluid (AF) samples from the same patient at term of pregnancy in order to find specific AF proteins as markers of premature rupture of membranes, a complication frequently observed during pregnancy. Maternal plasma and the corresponding AF were immunodepleted in order to remove the six most abundant proteins before the systematic analysis of their protein composition. The protein samples were then fractionated by IEF Off-Gel electrophoresis (OGE), digested and analyzed with nano-LC-MS/MS separation, revealing a total of 73 and 69 proteins identified in maternal plasma and AF samples, respectively. The proteins identified in AF have been compared to those identified in the mother plasma as well as to the reference human plasma protein list reported by Anderson et al. (Mol. Cell. Proteomics 2004, 3, 311-326). This comparison showed that 26 proteins were exclusively present in AF and not in plasma among which 10 have already been described to be placenta or pregnancy specific. As a further validation of the method, plasma proteins fractionated by OGE and analysed by nano-LC-MS/MS have been compared to the Swiss 2-D PAGE reference map by reconstructing a map that matches 2-D gel and OGE experimental data. This representation shows that 36 of 49 reference proteins could be identified in both data sets, and that isoform shifts in pI are well conserved in the OGE data sets.  相似文献   

11.
《Electrophoresis》2018,39(7):965-980
Two‐dimensional gel electrophoresis (2DE) in proteomics is traditionally assumed to contain only one or two proteins in each 2DE spot. However, 2DE resolution is being complemented by the rapid development of high sensitivity mass spectrometers. Here we compared MALDI‐MS, LC‐Q‐TOF MS and LC‐Orbitrap Velos MS for the identification of proteins within one spot. With LC‐Orbitrap Velos MS each Coomassie Blue‐stained 2DE spot contained an average of at least 42 and 63 proteins/spot in an analysis of a human glioblastoma proteome and a human pituitary adenoma proteome, respectively, if a single gel spot was analyzed. If a pool of three matched gel spots was analyzed this number further increased up to an average of 230 and 118 proteins/spot for glioblastoma and pituitary adenoma proteome, respectively. Multiple proteins per spot confirm the necessity of isotopic labeling in large‐scale quantification of different protein species in a proteome. Furthermore, a protein abundance analysis revealed that most of the identified proteins in each analyzed 2DE spot were low‐abundance proteins. Many proteins were present in several of the analyzed spots showing the ability of 2DE‐MS to separate at the protein species level. Therefore, 2DE coupled with high‐sensitivity LC‐MS has a clearly higher sensitivity as expected until now to detect, identify and quantify low abundance proteins in a complex human proteome with an estimated resolution of about 500 000 protein species. This clearly exceeds the resolution power of bottom‐up LC‐MS investigations.  相似文献   

12.
13.
SDS-free polyacrylamide gel electrophoresis is an effective alternative approach to peptide fractionation. Here we describe a discontinuous buffer system at acid pH that improves the separation of acidic peptides from tryptic digestion. MOPS and chloride act as trailing and leading ions, respectively, in this system, while histidine operates as counterion and buffers all solutions. In these electrophoretic conditions, peptides with pI below 5.5 migrate with low overall electrophoretic mobilities but high differences from one another, which allows for their efficient resolution. In silico analysis of several proteomes shows that the acid pH system allows a peptide simplification of 2.5-fold with respect to the total peptide mixture, and still a proteome coverage of about 95% is achievable. A straightforward method with a protocol including proteomic studies was achieved for SDS-PAGE of proteins, enzyme treatment and further peptide fractionation by SDS-free acid PAGE.  相似文献   

14.
A liquid-phase three-dimensional protein separation method has been developed that is used to separate the cytosolic fraction of a HEL cell lysate via isoelectric focusing (IEF), nonporous silica (NPS) reversed-phase high-performance liquid chromatography (RP-HPLC) and electrospray ionization time-of-flight mass spectrometry (ESI-TOFMS), respectively. Several hundred unique protein molecular weights were observed in a pI range from 4.8 to 8.5 and a mass range from 5 to 85 kDa. Proteins were positively identified by analysis of the pI (+/-0.5 pI units), an intact protein molecular weight (+/-150 ppm), and peptide mass mapping results. Using the molecular weight (MW) and peptide mapping results of identified proteins it was possible to characterize their posttranslational (PTMs) and/or sequence modifications. PTMs were detected on both forms of cytosolic actin, heat shock 90 beta, HINT and alpha-enolase. Sequence modifications or conflicts were observed for beta-and gamma-actin, ATP beta-synthase and heat shock 90 beta. IEF-NPS-RP-HPLC/ESI-TOFMS was used to determine experimental pI, MW and relative hydrophobicity values for each protein detected. This data was used to generate a 2-D pI-MS protein map, where proteins are displayed according to their pI and molecular weight. Protein molecular weight peaks are represented as bands in the 2-D pI-MS image where the gray scale of each band is proportional to the intensity of the protein molecular weight peak. In addition, a third hydrophobicity dimension (%B) was added as the % acetonitrile elution to generate a 3-D pI-MS-%B plot where each protein can be tagged according to three parameters.  相似文献   

15.
We outlined a mathematical approach suitable for characterization of experimental data given by 2-D densitograms. In particular we consider numerical characterization of proteomics maps. The basis of our approach is to order "spots" of a 2-D map and assign them unique labels (that in general will depend on the criteria used for ordering). In this way a map is "translated" into a sequence. In the next step one associates with the generated sequence a geometrical path and views such a path as a mathematical object that needs characterization. We have ordered spots representing proteins in 2-D gel plates according to their relative intensities which results in a zigzag path that produces a complicated "fingerprint" pattern. Mathematical characterization of zigzag pattern follows similar mathematical characterizations of embedded patterns based on matrices, the elements of which are given as quotients of Euclidean distance between spots and the distance along the zigzag path. The leading eigenvalue of constructed matrices is taken to represent characterization of the original 2-D map. Comparison of different 2-D maps (simulated by using random generator) allows one to construct partial order, which although qualitative in nature gives some insight into perturbation induced by foreign agents to the proteome of the control cell.  相似文献   

16.
Proteomics studies are often complicated by the wide dynamic range of the biological fluids, in which few highly abundant proteins obscure the signal of low abundant ones. To overcome this problem, several techniques have been developed on the basis of "depletion principles," namely immuno-subtraction with specific antibodies against the most-abundant proteins. Unfortunately, the probability of codepletion is a noteworthy drawback associated with these strategies. The ProteoMiner (PM) technology is a novel approach, consisting of a combinatorial library of hexapeptide ligands coupled to beads, that allows the capture of all species present in a proteome, but at much reduced protein concentration differences, simultaneously enhancing the concentration of the most dilute species. In this study, we evaluated the compatibility of the PM kit's elution reagent with 2-DE analysis, comparing five different purification methods on serum samples eluted from the beads: the "ReadyPrep 2-D Clean-up kit" and precipitation with organic solvents, as acetone/methanol, TCA/acetone, ACN, and chloroform/methanol. Considering protein recovery yield (quantity) and 2-DE spot pattern (quality), precipitation with ACN offered the most promising approach, showing the best spot resolution in all regions of the pH gradient and the greatest number of protein spots visualized on 2-D gels.  相似文献   

17.
This paper describes a mathematical approach applied for decoding the complex signal of two-dimensional polyacrylamide gel electrophoresis maps of protein mixtures. The method is helpful in extracting analytical information since separation of all the proteins present in the sample is still far from being achieved and co-migrating proteins are generally present in the same spot. The simplified method described is based on the study of the 2-D autocovariance function (2D-ACVF) computed on an experimental digitized map. The first part of the 2D-ACVF allows for the estimation of the number of proteins present in the sample (2D-ACVF computed at the origin) and of the separation performance (mean spot size). Moreover, the 2D-ACVF plot is a powerful tool in identifying order in the spot position, and singling it out from the complex separation pattern. This method was validated on synthetic maps obtained by computer simulation to describe 2-D PAGE real maps and reference maps retrieved from the SWISS-2DPAGE database. The results obtained are discussed by focusing on specific information relevant in proteomics: sample complexity, separation performance, and identification of spot trains related to post-translational modifications.  相似文献   

18.
The standard procedure adopted up to the present in proteome analysis calls for just reduction prior to the isoelectric focusing/immobilized pH gradient (IEF/IPG) step, followed by a second reduction/alkylation step in between the first and second dimension, in preparation for the sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) step. This protocol is far from being optimal. It is here demonstrated, by matrix assisted laser desorption/ionization-time of flight (MALDI-TOF)-mass spectrometry, that failure to reduce and alkylate proteins prior to any electrophoretic step (including the first dimension) results in a large number of spurious spots in the alkaline pH region, due to "scrambled" disulfide bridges among like and unlike chains. This series of artefactual spots comprises not only dimers, but an impressive series of oligomers (up to nonamers) in the case of simple polypeptides such as the human alpha- and beta-globin chains, which possess only one (alpha-) or two (beta-) -SH groups. As a result, misplaced spots are to be found in the resulting two-dimensional (2-D) map, if performed with the wrong protocol. The number of such artefactual spots can be impressively large. In the case of analysis of complex samples, such as human plasma, it is additionally shown that failure to alkylate proteins results in a substantial loss of spots in the alkaline gel region, possibly due to the fact that these proteins, at their pI, regenerate their disulfide bridges with concomitant formation of macroaggregates which become entangled with and trapped within the polyacrylamide gel fibers. This strongly quenches their transfer in the subsequent SDS-PAGE step.  相似文献   

19.
Mouse brain proteins were isolated from five regions (cerebellum, cerebral cortex, hippocampus, striatum, and cervical spinal cord) at five ages from the 10th week to the 24th month, and separated by two-dimensional gel electrophoresis (2-DE). 2-DE was carried out with an immobilized pH gradient bar in the first dimension, and by sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the second dimension. Over one thousand protein spots were visualized by silver staining and quantified by image processing. In the analyses, 58 protein spots were distinguishable among the above five brain regions, and 17 proteins were shown to be varied in quantity in the course of aging. Partial amino-terminal sequences and/or internal sequences for a total of 301 protein spots were analyzed. One hundred and eighty proteins appeared to have blocked N-termini and 122 proteins were identified. Twenty-seven new proteins were identified by sequence homology search. A mouse brain proteome database was constructed, which consists of the 2-DE map images and the respective spot data files with 15 related references.  相似文献   

20.
Herbert B  Righetti PG 《Electrophoresis》2000,21(17):3639-3648
Sample prefractionation, as obtained via multicompartment electrolyzers with isoelectric membranes, greatly enhanced the load ability, resolution and detection sensitivity of two-dimensional (2-D) maps in proteome analysis. This was demonstrated with different samples. In an Escherichia coli total cell extract, analysis by a 2-D map run in a pH 4-5 gradient showed many more spots when prefractionated, as compared with standard maps available in databases such as SWISS-2DPAGE. Analysis of human plasma in the pH 3-6 range showed an increase in the number of highly acidic proteins in the fractionated sample compared to whole plasma. With both samples no protein precipitation or smears occurred and much larger sample amounts could be loaded upon prefractionation, so that a large number of spots could be visualized by Coomassie staining, which is fully compatible with subsequent matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号