首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 513 毫秒
1.
Tungstate ions supported on the periodic mesoporous organosilica with ionic liquid frameworks (WO4=@PMO-IL) were found to be a recoverable catalyst system for the highly selective oxidation of various primary or secondary alcohols to the corresponding aldehydes or ketones by 30% H2O2 as green oxidant under neutral aqueous reaction conditions. The catalyst can be also recovered and efficiently reused in seven subsequent reaction cycles without any remarkable decreasing in the catalyst activity and selectivity. Moreover, N2 sorption analysis, transmission electron microscopy (TEM) images, and thermal gravimetric analysis (TGA) showed that the structure regularity and functional groups loaded of the catalyst were not affected during the reaction process.  相似文献   

2.
The preparation of a novel palladium‐supported periodic mesoporous organosilica based on alkylimidazolium ionic liquid (Pd@PMO‐IL) in which imidazoilium ionic liquid is uniformly distributed in the silica mesoporous framework is described. Both Pd@PMO‐IL and the parent PMO‐IL were characterized by N2‐adsorption–desorption, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), TEM, and solid‐state NMR spectroscopy. We have demonstrated that Pd@PMO‐IL is an efficient and reusable catalyst for the Suzuki–Miyaura coupling reaction of various types of iodo‐, bromo‐, and even deactivated aryl chlorides in water. It was also found that although the PMO‐IL nanostructure acts as reservoir for soluble Pd species, it can also operate as a nanoscaffold to recapture the Pd nanoparticles into the mesochannels thus preventing extensive agglomeration of Pd. This observation might be attributed to the isolated ionic liquid units that effectively control the reaction mechanism by preventing Pd agglomeration and releasing and recapturing Pd nanoparticles during the reaction process. The catalyst can be recovered and reused for at least four reaction cycles without significant loss of activity.  相似文献   

3.
SBA-15负载Pd催化剂的制备及其在Heck反应中的应用研究   总被引:2,自引:0,他引:2  
利用水热反应制备了表面离子液体功能化的SBA-15介孔材料,在丙酮溶液中与氯化钯反应,然后使用水合肼在乙醇中还原.测试了这种催化剂在Mizoroki-Heck反应中的催化活性.与直接负载在SBA-15上的钯催化剂相比,这种表面修饰的介孔SBA-15负载催化剂表现出更高的催化活性、可回收性和反应稳定性.氮气吸脱附实验和小角XRD衍射实验表明,在合成中,材料的介孔性能并没有被破坏.透视电镜也表征了该材料的表面形貌.最后,Mizoroki-Heck反应表明该催化剂具有很高的催化活性,且循环五次后,其催化活性降低并不明显.  相似文献   

4.
A novel nano‐fibrillated mesoporous carbon (IFMC) was successfully prepared via carbonization of the ionic liquid 1‐methyl‐3‐phenethyl‐1H‐imidazolium hydrogen sulfate ( 1 ) in the presence of SBA‐15. The material was shown to be an efficient and unique support for the palladium nanoparticle (PdNP) catalyst Pd@IFMC ( 2 ) in aerobic oxidation of heterocyclic, benzylic, and heteroatom containing alcohols on pure water at temperatures as low as 40 °C for the first time and giving almost consistent activities and selectivities within more than six reaction runs. The catalyst has also been employed as an effective catalyst for the selective oxidation of aliphatic and allylic alcohols at 70–80 °C. The materials were characterized by X‐ray photoelectron spectroscopy (XPS), N2 adsorption–desorption analysis, transmission electron microscopy (TEM), and electron tomography (ET). Our compelling XPS and ET studies showed that higher activity of 2 compared to Pd@CMK‐3 and Pd/C in the aerobic oxidation of alcohols on water might be due to the presence of nitrogen functionalities inside the carbon structure and also the fibrous nature of our materials. The presence of a nitrogen heteroatom in the carboneous framework might also be responsible for the relatively uniform and nearly atomic‐scale distribution of PdNPs throughout the mesoporous structure and the inhibition of Pd agglomeration during the reaction, resulting in high durability, high stability, and recycling characteristics of 2 . This effect was clearly confirmed by comparing the TEM images of the recovered 2 and Pd@CMK‐3.  相似文献   

5.
A novel nano-fibrillated mesoporous carbon (IFMC) was successfully prepared via carbonization of the ionic liquid 1-methyl-3-phenethyl-1H-imidazolium hydrogen sulfate (1) in the presence of SBA-15. The material was shown to be an efficient and unique support for the palladium nanoparticle (PdNP) catalyst Pd@IFMC (2) in aerobic oxidation of heterocyclic, benzylic, and heteroatom containing alcohols on pure water at temperatures as low as 40 °C for the first time and giving almost consistent activities and selectivities within more than six reaction runs. The catalyst has also been employed as an effective catalyst for the selective oxidation of aliphatic and allylic alcohols at 70-80 °C. The materials were characterized by X-ray photoelectron spectroscopy (XPS), N(2) adsorption-desorption analysis, transmission electron microscopy (TEM), and electron tomography (ET). Our compelling XPS and ET studies showed that higher activity of 2 compared to Pd@CMK-3 and Pd/C in the aerobic oxidation of alcohols on water might be due to the presence of nitrogen functionalities inside the carbon structure and also the fibrous nature of our materials. The presence of a nitrogen heteroatom in the carboneous framework might also be responsible for the relatively uniform and nearly atomic-scale distribution of PdNPs throughout the mesoporous structure and the inhibition of Pd agglomeration during the reaction, resulting in high durability, high stability, and recycling characteristics of 2. This effect was clearly confirmed by comparing the TEM images of the recovered 2 and Pd@CMK-3.  相似文献   

6.
研究了高分散性的负载离子液体纳米钯催化剂的制备及其催化芳卤羰化反应的性能. 用XRD、HRTEM和XPS等方法对催化剂进行了表征, 结果表明, 钯组分处于高分散零价态, 其平均粒径小于5 nm, 且催化剂表面存在一厚度适中的离子液体液膜, 有利于提高催化剂的稳定性; 该催化剂对PhI、PhBr、PhCl的羰化反应的催化活性优于离子液体两相催化体系, 在优化的反应条件下, 碘苯的转化率可达99.3%, 生成苯甲酸乙酯的转化频率(TOF)可高达4926 h−1, 反应产物中苯甲酸乙酯的选择性大于99%.  相似文献   

7.
In this study, we present a simple process to obtain highly dispersed palladium nanoparticles on Vulcan XC-72R carbon support without any protective agent. To obtain high metal loading Pd/C catalyst without any surfactant, we modified the polyol process by employing NH3 species as a mediation to control the reaction pathway to avoid the precipitation of Pd(OH)2, and hence the agglomeration of Pd nanoparticles. The obtained Pd/C sample was characterized by X-ray diffraction (XRD) and transmission electron microscope (TEM) techniques. The results show that highly dispersed Pd/C catalyst with an average diameter of 3.0 nm could be obtained in this novel process. The activity of formic acid oxidation on this Pd/C catalyst was examined via cyclic voltammetry technique and it is found that the catalytic activity is greatly enhanced due to the reduced particle size and the improved dispersion of palladium nanoparticles on the carbon surface.  相似文献   

8.
A new flavin catalyst 2 immobilized in an ionic liquid ([BMIm]PF6) was used for the highly selective oxidation of sulfides to sulfoxides by hydrogen peroxide. The sulfoxides were obtained in good to high yields and high selectivity without any detectable overoxidation to sulfone. The catalyst in the ionic liquid was recycled up to seven times without loss of activity or selectivity.  相似文献   

9.
The role of Pd nanoparticles in ionic liquid in the Heck reaction   总被引:2,自引:0,他引:2  
Pd(0) nanoparticles with approximately 2 nm diameter, immobilized in 1-n-butyl-3-methylimidazolium hexafluorophosphate ionic liquid, are efficient catalyst precursors for coupling of aryl halides with n-butylacrylate. In situ TEM analysis of the ionic liquid catalytic solution after the catalytic reaction shows the formation of larger nanoparticles ( approximately 6 nm). The palladium content in the organic phase during the arylation reaction was checked by ICP-AS and shows significant metal leaching (up 34%) from the ionic phase to the organic phase at low substrate conversions and drops to 5-8% leaching at higher conversions. These results strongly suggest that the Pd(0) nanoparticles serve as a reservoir of "homogeneous" catalytic active species.  相似文献   

10.
A novel SBA-15 functionalized palladium complex partially confined with 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid (Material 4) was found to be a very efficient and reusable catalyst in the Suzuki-Miyaura coupling reaction of aryl halides including aryl chlorides and heteroaryl halides with different aryl boronic acids under aqueous conditions without any organic co-solvents. Our studies showed that 4 is a more efficient catalyst in comparison with the catalyst not containing IL or catalyst with a higher ratio of IL. The materials were characterized by N(2)-sorption analysis, TGA and transmission electron microscopy before and after catalysis. While our studies showed that the catalyst can be successfully recycled and reused in at least 4 reaction runs, in contrast, several poisoning experiments and kinetic studies provide the notion that homogeneous (dissolved) species are responsible for the observed catalysis.  相似文献   

11.
Karimi B  Enders D 《Organic letters》2006,8(6):1237-1240
[reaction: see text] A new concept of simultaneous covalent anchoring of a N-heterocyclic carbene palladium/ionic liquid matrix on the silica surface and the application of the resulting catalyst in the Heck reaction of a variety of different haloarenes is described. The catalyst shows high thermal stability (up to 280 degrees C) and could be recovered and reused for four reaction cycles, giving a total TON congruent with 36 600. Furthermore, TEM coupled with EDX analysis indicate the formation of Pd nanoparticles within the immobilized IL layer.  相似文献   

12.
A process for the hydroformylation of relatively low volatility alkenes (demonstrated for 1-dodecene) in a continuous flow system is described. The catalyst is dissolved in an ionic liquid while the substrate and gaseous reagents are transported into the reactor dissolved in supercritical CO(2), which simultaneously acts as a transport vector for aldehyde products. Decompression of the fluid mixture downstream yields products which are free of both reaction solvent and catalyst. The use of rhodium complexes of triaryl phosphites leads to ligand degradation through reaction of the ionic liquid with water and subsequent attack of the released HF on the phosphite. Sodium salts of sulfonated phosphines are insufficiently soluble in the ionic liquids to obtain acceptable rates, but replacing the sodium by a cation similar to that derived from the ionic liquid, allows good solubility and activity to be obtained. The nature of the ionic liquid is very important in achieving high rates, with 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amides giving the best activity if the alkyl chain is at least C(8). Catalyst turnover frequencies as high as 500 h(-1) have been observed, with the better rates at higher substrate flow rates. Rhodium leaching into the product stream can be as low as 0.012 ppm, except at low partial pressures of CO/H(2), when it is significantly higher. Oxygen impurities in the CO(2) feed can lead to oxidation of the phosphine giving higher rates, lower selectivities to the linear aldehyde, increased alkene isomerization and greater leaching of rhodium. However, it is found that under certain process conditions, the supercritical fluid-ionic liquid (SCF-IL) system can be operated continuously for several weeks without any visible sign of catalyst degradation. Comparisons with commercial hydroformylation processes are provided.  相似文献   

13.
《Comptes Rendus Chimie》2014,17(4):370-376
A convenient, highly versatile and eco-friendly protocol for the synthesis of quinoline derivatives via the Friedländer reaction is presented. The method is based on the use of 1,3-disulfonic acid imidazolium hydrogen sulfate (DSIMHS) as an efficient and reusable ionic liquid catalyst. A variety of ketones afforded the substituted quinolines in excellent yields during relatively short reaction times under solvent-free conditions; the catalyst could be easily recovered and reused for several times without any appreciable loss of activity.  相似文献   

14.
The C-C cross coupling reaction between bromobenzene and styrene in the presence of Pd deposited on mesoporous acetylene soot (Pd/C) occurred in a tetraalkylammonium ionic liquid (IL) as a truly heterogeneous catalytic process. The active palladium form was not transferred into the reaction solution. Deposited palladium activation was observed when the Pd/C catalyst was preliminarily heated in the IL in the presence of dibutylamine as a base.  相似文献   

15.
New catalytic systems based on in situ and preformed palladium nanoparticles in ionic liquids (characterised by TEM) starting from palladium acetate or dipalladiumtris(dibenzylideneacetone) have been applied in the synthesis of 4-phenylbutan-2-one (II), a model compound for the preparation of fragrances. Imidazolium-based ionic liquid containing a methyl hydrogenophosphonate anion leads to an efficient Pd-catalyzed tandem coupling/reduction process, taking advantage of the multi-role of this solvent (nanoparticles stabiliser, base, hydrogen transfer agent). The influence of the mono-phosphine ligands (1-3) on the catalyst has been evaluated, showing that the ligand-free palladium system turns into the most appropriate for the formation of II using Pd(OAc)(2) as precursor. Fine-tuning conditions involved in this multi-parameter process have led us to propose a plausible mechanism based on the hydrogen transfer coming from the methyl hydrogenophosphonate anion.  相似文献   

16.
A new bis(N ‐heterocyclic carbene) (NHC) palladium complex supported on silica coated magnetic nanoparticles (MNPs) was prepared using the reaction of synthesized Pd‐NHC complex with MNPs. The Pd‐NHC complex was prepared using the reaction of a hydroxyl‐functionalized bis‐imidazolium ionic liquid. The Pd‐NHC organometallic complex was used as a heterogeneous recyclable and active catalyst in the Suzuki‐Miyaura reaction and various aryl halides were coupled with arylboronic acids in order to synthesize diverse biaryls in good to excellent yields. The prepared catalyst was characterized by use of some different microscopic and spectroscopic techniques including elemental analysis, FT‐IR spectroscopy, diffuse reflectance UV–Vis spectrophotometery, scanning electron microscopy (SEM), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM) and X‐ray diffraction (XRD). The Pd‐NHC catalyst system is a magnetic reusable catalyst and it can be separated from the reaction mixture using an external magnetic field. The catalyst was reusable in the Suzuki‐Miyaura coupling reaction at least for 6 times without significant decreasing in its catalytic activity.  相似文献   

17.
The ionic liquid 1‐ethyl‐3‐methylimidazolium acetate ([EMIM]Ac) is investigated as a solvent for the synthesis of Pd particles. Interestingly, nanosheet‐constructed Pd particles could be successfully synthesized in [EMIM]Ac without any additional reducing agent and template under ionothermal conditions. [EMIM]Ac itself works as the solvent, the reducing agent, and the template for the formation of these interesting Pd particles, making this method complementary to the well‐known ionic‐liquid‐precursor approach. Furthermore, [EMIM]Ac can be recycled with no loss of activity for the formation of nanosheet‐constructed Pd particles within our studied cycles. Specifically, the nanosheet‐constructed Pd particles exhibit superior electrocatalytic activity and stability towards ethanol oxidation and formic acid oxidation compared with commercially available Pd black catalyst, thus demonstrating their promising applications in fuel‐cell area. The current approach, thus, presents a green approach towards the synthesis of Pd particles, using only a simple palladium salt and an ionic liquid.  相似文献   

18.
采用非溶液法制备了原子级分散的Fe-N-C催化剂, 并用于硫醚和二级醇的选择性氧化. 研究结果表明, 这种原子级分散的Fe-N-C催化剂可在温和条件下选择性地将硫醚转化为亚砜, 而不会产生过度氧化的砜. 该工艺具有反应条件温和、 反应速度快、 收率高等优点; 该催化剂对二级醇氧化制酮反应具有较高的催化活性, 产率较高. 作为一种非均相催化剂, Fe-N-C催化剂循环使用5次后活性未见显著下降; 在实验结果和参考文献的基础上还提出了一种可能的自由基反应机理.  相似文献   

19.
Novel catalytic system based on palladium nanoparticles supported on poly (N-vinylpyrrolidone) (PVP) grafted silica was prepared. Aminopropylsilica was reacted with acryloyl chloride to form acrylamidopropylsilica, and onto this functionalized silica vinylpyrrolidone monomer was polymerized by free-radical polymerization. The complexation of PVP-grafted silica with PdCl2 was carried out to obtain the heterogeneous catalytic system. X-ray diffraction (XRD) technique and transmission electron microscopy (TEM) image showed that palladium dispersed through the support in nanometer size. This catalytic system exhibited excellent activity in cross-coupling reactions of aryl iodides, bromides and also chlorides with olefinic compounds in Heck-Mizoraki reactions in short reaction time and high yields. Elemental analysis of Pd by inductively coupled plasma (ICP) technique and hot filtration test showed low leaching of the metal into solution from the supported catalyst. The catalyst can be reused several times in repeating Heck reaction cycles without considerable loss in its activity.  相似文献   

20.
Phosphine-free palladium nanoparticles were embedded in a fluorous organic-inorganic hybrid material 6b prepared by the sol-gel process. The use of Pdn.6b in the Heck coupling reaction under microwave irradiation has been investigated. Recycling studies have shown that the catalyst can be readily recovered and reused several times without significant loss of activity. Reactions and recovery of the solid-supported palladium catalyst system can be carried out in the presence of air, without any particular precaution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号