首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polychlorotrifluoroethylene (PCTFE) in the form of beads was applied, as packing material for flow injection on-line column preconcentration and separation systems coupled with flame atomic absorption spectrometry (FAAS). Its performance characteristics were evaluated for trace copper determination in environmental samples. The on-line formed complex of metal with diethyldithiophosphate (DDPA) was sorbed on the PCTFE surface. Isobutyl methyl ketone (IBMK) at a flow rate of 2.8 mL min−1 was used to elute the analyte complex directly into the nebulizer-burner system of spectrophotometer. The proposed sorbent material reveal, excellent chemical and mechanical resistance, fast adsorption kinetics permitting the use of high sample flow rates up to 15 mL min−1 without loss of retention efficiency. For copper determination, with 90 s preconcentration time the sample frequency was 30 h−1, the enhancement factor was 250, which could be further improved by increasing the loading (preconcentration) time. The detection limit (3s) was cL = 0.07 μg L−1, and the precision (R.S.D.) was 1.8%, at the 2.0 μg L−1 Cu(II) level. For lead determination, the detection limit was cL = 2.7 μg L−1, and the precision (R.S.D.) 2.2%, at the 40.0 μg L−1 Pb(II) level. The accuracy of the developed method was evaluated by analyzing certified reference materials and by recovery measurements on spiked natural water samples.  相似文献   

2.
A novel hydrophobic sorbent material for on-line column preconcentration and separation systems coupled with atomic spectrometry was developed. Poly(etheretherketone) (PEEK) in the form of turnings was used as packing material and evaluated for trace lead determination in environmental samples. Sample and ammonium diethyl-dithiophosphate (DDPA) reagent were mixed on-line and the Pb(II)-DDPA complex was retained effectively on PEEK-turnings. Isobutyl methyl ketone (IBMK) was adopted for efficient analyte complex elution and subsequently transportation into the nebulizer-burner system for atomization. The developed sorbent material has shown, excellent chemical and mechanical resistance, fast adsorption kinetics permitting the use of high sample flow rates without significant loss of retention efficiency. For 120 s sample preconcentration time the sampling frequency was 20 h−1, the enhancement factor was 110, the detection limit (3 s) was cL = 0.32 μg L−1, and the relative standard deviation (RSD) was sR = 2.2%, at the 50.0 μg L−1 Pb(II) level. The accuracy of the developed method was evaluated by analyzing certified reference materials.  相似文献   

3.
4.
A new automated spectrophotometric method for the determination of total sulfite in white and red wines is reported. The assay is based on the reaction of o-phthalaldehyde (OPA) and ammonium chloride with the analyte in basic medium under SI conditions. Upon on-line alkalization with NaOH, a blue product is formed having an absorption maximum at 630 nm. The parameters affecting the reaction - temperature, pH, ionic strength, amount concentration and volume of OPA, amount concentration of ammonium chloride, flow rate and reaction coil length - and the gas-diffusion process - sample and HCl volumes, length of mixing coil, donor flow rate - were studied. The proposed method was validated in terms of linearity (1-40 mg L−1, r = 0.9997), limit of detection (cL = 0.3 mg L−1) and quantitation (cQ = 1.0 mg L−1), precision (sr = 2.2% at 20 mg L−1 sulfite, n = 12) and selectivity. The applicability of the analytical procedure was evaluated by analyzing white and red wine samples, while the accuracy as expressed by recovery experiments ranged between 96% and 106%.  相似文献   

5.
Segura R  Pradena M  Pinto D  Godoy F  Nagles E  Arancibia V 《Talanta》2011,85(5):2316-2319
A sensitive procedure is presented for the voltammetric determination of nickel. The procedure involves an adsorptive accumulation of nickel 1-nitroso-2-napthol (NN) complex on a bismuth film electrode prepared ex situ by electrodeposition. The most suitable operating conditions and parameters such as pH, ligand concentration (CNN), adsorptive potential (Eads), adsorptive time (tads), scan rate and others were selected and the determination of nickel in aqueous solutions using the standard addition method was possible. The adsorbed Ni-NN complex gives a well defined cathodic stripping peak current at −0.70 V, which was used for the determination of nickel in the concentration range of 10.0-70.0 μg L−1 (pH 7.5; CNN 6.5 μmol L−1; Eads −0.30 V; tads 60 s) with a detection limit of 0.1 μg L−1. The relative standard deviation for a solution containing 10.0 μg L−1 of Ni(II) was 3.5% (n = 4). The proposed method was validated determining Ni(II) in certified reference waste water (SPS-WW1) and Certified Reference Water for Trace Elements (TMDA 51.3) with satisfactory results. Then lake water samples were analyzed.  相似文献   

6.
Ibrahim S.I. Adam 《Talanta》2009,77(3):1160-1164
A newly simple flow injection wetting-film extraction system coupled to flame atomic absorption spectrometry (FAAS) has been developed for trace amount of cadmium determination. The sample was mixed on-line with sodium diethyl dithiocarbamate and the produced non-charged Cd(II)-diethyl dithiocarbamate (DDTC) chelate complex was extracted on the thin film of diisobutyl ketone (DIBK) on the inner wall of the PTFE extraction coil. The wetting-film with the extracted analyte was then eluted by a segment of the cover solvent, and transported directly to the FAAS for evaluation. All the important chemical and flow parameters were optimized. Under the optimized conditions an enhancement factor of 35, a sample frequency of 22 h−1 and a detection limit of cL = 0.7 μg l−1 Cd(II) were obtained for 60 s preconcentration time. The calibration curve was linear over the concentration range 1.5-45.0 μg l−1 Cd(II) and the relative standard deviation, R.S.D. (n = 10) was 3.9%, at 10.0 μg l−1 concentration level. The developed method was successfully applied to cadmium determination in a variety of environmental water samples as well as waste-water sample.  相似文献   

7.
A method for the simultaneous determination of Pb(II), Cd(II), and Zn(II) at low μg L−1 concentration levels by sequential injection analysis-anodic stripping voltammetry (SIA-ASV) using screen-printed carbon nanotubes electrodes (SPCNTE) was developed. A bismuth film was prepared by in situ plating of bismuth on the screen-printed carbon nanotubes electrode. Operational parameters such as ratio of carbon nanotubes to carbon ink, bismuth concentration, deposition time and flow rate during preconcentration step were optimized. Under the optimal conditions, the linear ranges were found to be 2-100 μg L−1 for Pb(II) and Cd(II), and 12-100 μg L−1 for Zn(II). The limits of detection (Sbl/S = 3) were 0.2 μg L−1 for Pb(II), 0.8 μg L−1 for Cd(II) and 11 μg L−1 for Zn(II). The measurement frequency was found to be 10-15 stripping cycle h−1. The present method offers high sensitivity and high throughput for on-line monitoring of trace heavy metals. The practical utility of our method was also demonstrated with the determination of Pb(II), Cd(II), and Zn(II) by spiking procedure in herb samples. Our methodology produced results that were correlated with ICP-AES data. Therefore, we propose a method that can be used for the automatic and sensitive evaluation of heavy metals contaminated in herb items.  相似文献   

8.
A highly sensitive flow analysis system has been developed for the trace determination of reactive phosphate in natural waters, which uses a polymer inclusion membrane (PIM) with Aliquat 336 as the carrier for on-line analyte separation and preconcentration. The system operates under flow injection (FI) and continuous flow (CF) conditions. Under optimal FI conditions the system is characterised by a linear concentration range between 0.5 and 1000 μg L−1 P, a sampling rate of 10 h−1, a limit of detection of 0.5 μg L−1 P and RSDs of 3.2% (n = 10, 100 μg L−1) and 7.7% (n = 10, 10 μg L−1). Under CF conditions with 10 min stop-flow time and sample solution flow rate of 1.32 mL min−1 the flow system offers a limit of detection of 0.04 μg L−1 P, a sampling rate of 5 h−1 and an RSD of 3.4% (n = 5, 2.0 μg L−1). Interference studies revealed that anions commonly found in natural waters did not interfere when in excess of at least one order of magnitude. The flow system, operating under CF conditions, was successfully applied to the analysis of natural water samples containing concentrations of phosphate in the low μg L−1 P range, using the multipoint standard addition method.  相似文献   

9.
Themelis DG  Kika FS  Economou A 《Talanta》2006,69(3):615-620
A new rapid and sensitive FI assay is reported for the simultaneous direct spectrophotometric determination of trace Cr(VI) and Cr(III) in real samples. The method is based upon the reaction of Cr(VI) with chromotropic acid (CA) in highly acidic medium to form a water-soluble complex (λmax = 370 nm). Cr(III) reacts with CA only after its on-line oxidation to Cr(VI) by alkaline KIO4. The determination of each chromium species in the sample was achieved by absorbance differences. The calibration curves were linear over the range 3-4000 μg l−1 and 30-1200 μg l−1 for Cr(VI) and Cr(III), respectively, while the precision close to the quantitation limit was satisfactory in both cases (sr = 3.0% for Cr(VI) and 4.0% for Cr(III) (n = 10) at 10 and 50 μg l−1 level, respectively). The method developed proved to be adequately selective and sensitive (cL = 1 and 10 μg l−1 for Cr(VI) and Cr(III), respectively). The application of the method to the analysis of water samples (tap and mineral water) gave accurate results based on recovery studies (93-106%). Analytical results of real sample analysis were in good agreement with certified values.  相似文献   

10.
In this study a new method for determination of cadmium in alcohol fuel using Moringa oleifera seeds as a biosorbent in an on-line preconcentration system coupled to flame atomic absorption spectrometry (FAAS) was developed. Flow and chemical variables of the proposed system were optimized through multivariate designs. The limit of detection for cadmium was 5.50 μg L−1 and the precision was below 2.3% (35.0 μg L−1, n = 9). The analytical curve was linear from 5 to 150 μg L−1, with a correlation coefficient of 0.9993. The developed method was successfully applied to spiked alcohol fuel, and accuracy was assessed through recovery tests, with recovery ranging from 97.50 to 100%.  相似文献   

11.
Competitive electrochemical enzyme-linked immunosorbent assays based on disposable screen-printed electrodes have been developed for quantitative determination of ochratoxin A (OTA). The assays were carried out using monoclonal antibodies in the direct and indirect format. OTA working range, I50 and detection limits were 0.05-2.5 and 0.1-7.5 μg L−1, 0.35 (±0.04) μg L−1 and 0.9 (±0.1) μg L−1, 60 and 100 μg L−1 in the direct and indirect assay format, respectively. The immunosensor in the direct format was selected for the determination of OTA in wheat. Samples were extracted with aqueous acetonitrile and the extract analyzed directly by the assay without clean-up. The I50 in real samples was 0.2 μg L−1 corresponding to 1.6 μg/kg in the wheat sample with a detection limit of 0.4 μg/kg (calculated as blank signal −3σ). Within- and between-assay variability were less than 5 and 10%, respectively. A good correlation (r = 0.9992) was found by comparative analysis of naturally contaminated wheat samples using this assay and an HPLC/immunoaffinity clean-up method based on the AOAC Official Method 2000.03 for the determination of OTA in barley.  相似文献   

12.
An on-line solid phase extraction (SPE) preconcentration system coupled to flame atomic absorption spectrometer (FAAS) was developed for determination of copper and cadmium at μg L−1 level. The method is based on the on-line retention of copper and cadmium on a microcolumn of alumina modified with sodium dodecyl sulfate (SDS) and 1,10-phenanthroline and subsequent elution with ethanol and determination by FAAS. The effect of chemical and flow variables that could affect the performance of the system was investigated. The relative standard deviation (n = 6) at 20 μg L−1 level for copper and cadmium were 1.4 and 2.2% and the corresponding limits of detection (based on 3σ) were 0.04 and 0.14 μg L−1, respectively. The method was successfully applied to determination of copper and cadmium in human hair and water samples.  相似文献   

13.
A novel technique, high temperature headspace liquid-phase microextraction (HS-LPME) with room temperature ionic liquid (RTIL), 1-butyl-3-methylimidazolium hexafluorophosphate ([C4MIM][PF6]) as extractant, was developed for the analysis of dichlorodiphenyltrichloroethane (p,p′-DDT and o,p′-DDT) and its metabolites including 4,4′-dichlorodiphenyldichloroethylene (p,p′-DDE) and 4,4′-dichlorodiphenyldichloroethane (p,p′-DDD) in water samples by high performance liquid chromatography with ultraviolet detection. The parameters such as salt content, sample pH and temperature, stirring rate, extraction time, microdrop volume, and sample volume, were found to have significant influence on the HS-LPME. The conditions optimized for extraction of target compounds were as follows: 35% NaCl (w/v), neutral pH condition, 70 °C, 800 rpm, 30 min, 10 μL [C4MIM][PF6], and 25 mL sample solutions. Under the optimized conditions, the linear range, detection limit (S/N = 3), and precision (R.S.D., n = 6) were 0.3-30 μg L−1, 0.07 μg L−1, and 8.0% for p,p′-DDD, 0.3-30 μg L−1, 0.08 μg L−1, and 7.1% for p,p′-DDT, 0.3-30 μg L−1, 0.08 μg L−1, and 7.2% for o,p′-DDT, and 0.2-30 μg L−1, 0.05 μg L−1, and 6.8% for p,p′-DDE, respectively. Water samples including tap water, well water, snow water, reservoir water, and wastewater were analyzed by the proposed procedure and the recoveries at 5 μg L−1 spiked level were in the range of 86.8-102.6%.  相似文献   

14.
A simple and robust time-based on-line sequential injection system for trace mercury determination via cold vapour atomic absorption spectrometry (CVAAS), employing a new integrated gas-liquid separator (GLS), which in parallel operates as reactor, was developed. Sample and reductant are sequentially loaded into the GLS while an argon flow delivers the released mercury vapour through the atomic absorption cell. The proposed method is characterized by the ability of successfully managing variable sample volume up to 30 ml in order to achieve high sensitivity. For 20 ml sample volume, the sampling frequency is 25 h−1. The calibration curve is linear over the concentration range 0.05-5.0 μg l−1 of Hg(II), the detection limit is cL = 0.02 μg l−1, and the relative standard deviation is sr = 2.6% at 1.0 μg l−1 Hg(II) level. The performance of the proposed method was evaluated by analyzing certified reference material and applied to the analysis of natural waters and biological samples.  相似文献   

15.
Furazolidone has been banned from use in food animals because of its carcinogenicity and mutagenicity, but its continued misuse is widespread in aquacultures. Therefore, there is an urgent need for a simple, reliable, and rapid method for the detection of its marker residue, 3-amino-2-oxazolidinone (AOZ), in aquatic products. In this regard, we modified a simplified indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) to address this need. A good linearity was achieved over a concentration range of 0.05-12.15 μg L−1, and the IC50 value was 0.96 μg L−1. The sample preparation was simple and effective included water bath treatments, acid hydrolysis combined with overnight derivatization of AOZ by benzaldehyde. The limit of detection and the limit of quantification were 0.15 and 0.3 μg kg−1. The recoveries of AOZ in all tissues were between 78.0-95.3% at the levels of 0.3, 1.0, and 2.0 μg kg−1. The inter-assay variability was less than 19.1%. The modified ic-ELISA was applied in quantification of AOZ elimination in carp. The results showed that AOZ was quite difficult to eliminate. Good correlations of the results obtained by ELISA and LC-MS/MS were observed in incurred carp muscle (r = 0.9923) and carp plasma (r = 0.9915) at the levels of 2.5-571.8 μg kg−1 (μg L−1). Better results were obtained by modified ic-ELISA when compared with commercial ELISA kit. Therefore, the present assay is considered a rapid, accurate, reliable, and inexpensive method for the detection of furazolidone-residues in the edible tissues of aquatic animals.  相似文献   

16.
Correia PR  Oliveira PV 《Talanta》2005,67(1):46-53
The effectiveness of internal standardization for simultaneous atomic absorption spectrometry (SIMAAS) was investigated for As and Se determination in urine. Co and Sn were selected as internal standard (IS) candidates based on the evaluation of some physico-chemical parameters related to the atomization. Correlation graphs, plotted from the normalized absorbance signals (n = 20) of internal standard (axis y) versus analyte (axis x), precision, and accuracy of the analytical results were the supportive parameters to choose Co as the most appropriate IS. The urine samples were diluted 1 + 2 to 1.0% (v/v) HNO3 + 80 μg L−1 Co2+. The mixture 20 μg Pd + 3 μg Mg was used as chemical modifier and the optimized temperatures for pyrolysis and atomization steps were 1400 and 2300 °C, respectively. The characteristic masses for As (47 ± 1 pg) and Se (72 ± 2 pg) were estimated from the analytical curves. The detection limits (n = 20, 3δ) were 1.8 ± 0.1 and 2.6 ± 0.1 μg L−1 for As and Se, respectively. The reliability of the entire procedure was checked with the analysis of certified reference material from Sero AS(Seronorm™ Trace Elements in Urine). The obtained results showed the matrix interference disallowed the instrument calibration with aqueous standards. The best analytical condition was achieved when matrix-matched standards were used in combination with Co as IS, which improved the recoveries obtained for As. Under this experimental condition, eight urine samples were analysed and spiked with 10 and 25 μg L−1 As and Se. The mean recoveries were 96 ± 6% (10 μg L−1 As), 95 ± 6% (25 μg L−1 As), 101 ± 7% (10 μg L−1 Se), and 97 ± 4% (25 μg L−1 Se).  相似文献   

17.
A simple and robust on-line sequential insertion system coupled with hydride generation atomic absorption spectrometry (HG-AAS) was developed, for selective As(III) and total inorganic arsenic determination without pre-reduction step. The proposed manifold, which is employing an integrated reaction chamber/gas-liquid separator (RC-GLS), is characterized by the ability of the successful managing of variable sample volumes (up to 25 ml), in order to achieve high sensitivity. Arsine is able to be selectively generated either from inorganic As(III) or from total arsenic, using different concentrations of HCl and NaBH4 solutions. For 8 ml sample volume consumption, the sampling frequency is 40 h−1. The detection limit is cL = 0.1 and 0.06 μg l−1 for As(III) and total arsenic, respectively. The precision (relative standard deviation) at 2.0 μg l−1 (n = 10) level is sr = 2.9 and 3.1% for As(III) and total arsenic, respectively. The performance of the proposed method was evaluated by analyzing the certified reference material NIST CRM 1643d and spiked water samples with various concentration ratios of As(III) to As(V). The method was applied for arsenic speciation in natural waters samples.  相似文献   

18.
The determination of tetracycline by fluorescence spectrophotometry in complex matrices has some difficulties, because the presence of other compounds in the matrix affects the analytical signal. In this work, the effect of some inorganic species that are present in whey milk on the fluorescence signal of tetracycline is studied using a D-optimal experimental design. Next, an experimental strategy is proposed in conjunction with Parallel Factor Analysis, PARAFAC, modeling that leads to suitably modeling the severe matrix effect in the determination of tetracycline in whey milk. A specific design is performed in such a way that the lack of trilinearity due to the effect of the presence of interferents on the signal is obviated. Then, ten test samples from three brands of milk, spiked with different quantities of tetracycline and measured in 2 days were analysed using this methodology (mean of the absolute value of the relative errors: 5.1%). The developed analytical method fulfils the property of trueness, the relative errors being, both in calibration and prediction, inside the interval set by Commission Decision 2002/657/EC at these concentration levels. Decision limits (CCα) at x0 = 0 μg L−1 and at x0 = 100 μg L−1 were 13.2 and 112.4 μg L−1 respectively, for α = 0.05; whereas detection capabilities (CCβ) were 25.9 μg L−1 and 124.4 μg L−1 respectively for α = β = 0.05.  相似文献   

19.
A fast, sensitive and selective method for the determination of aluminium based on the reaction of the metal with pyrogallol red (PR) in the presence of tetrabutylammonium tetrafluoroborate (TBATFB) to form an Al(PR)3x9TBATFB complex which is adsorbed on the mercury electrode is presented. Under these conditions complexation of aluminium is rapid and no waiting period or heating of the sample is required. The reduction current of the accumulated complex is measured by scanning the potential in the cathodic direction. The variation of peak current with pH, adsorption time, adsorption potential, ligand and quaternary ammonium salt concentration, and some instrumental parameters, such as stirring rate in the accumulation stage, and step amplitude, pulse amplitude and step duration while obtaining the square wave voltamperograms were optimized. The best experimental parameters were pH 8.5, (NH4Ac-NH3 buffer), CPR = 25 μmol L−1, CTBATFB over 75 μmol L−1, tads = 60 s, and Eads = −0.60 V versus Ag/AgCl. A linear response is observed over the 0.0-30.0 μg L−1 concentration range, with a detection limit of 1.0 μg L−1. Reproducibility for 9.0 μg L−1 aluminium solution was 2.3% (n = 6). Synthetic sea water and sea water reference material CRM-SW were used for validation measurements. Aluminium in urine samples of a volunteer who ingested 800 mg of Al(OH)3 was analyzed.  相似文献   

20.
Yu HM  Song H  Chen ML 《Talanta》2011,85(1):625-630
A novel adsorbent-silica gel bound dithizone (H2Dz-SG) was prepared and used as solid-phase extraction of copper from complex matrix. The H2Dz-SG is investigated by means of FT-IR spectra and the SEM images, demonstrating the bonding of dithizone. The H2Dz-SG quantitatively adsorb copper ions, and the retained copper is afterwards collected by elution of 10% (v/v) nitric acid. An on-line flow injection solid-phase extraction procedure was developed for trace copper separation and preconcentration with detection by flame atomic spectrometry. By loading 5.4 mL of sample solution, a liner range of 0.5-120 μg L−1, an enrichment factor of 42.6, a detection limit of 0.2 μg L−1 and a precision of 1.7% RSD at the 40 μg L−1 level (n = 11) were obtained, along with a sampling frequency of 47 h−1. The dynamic sorption capacity of H2Dz-SG to Cu2+ was 0.76 mg g−1. The accuracy of the proposed procedure was evaluated by determination of copper in reference water sample. The potential applications of the procedure for extraction of trace copper were successfully accomplished in water samples (tap, rain, snow, sea and river). The spiking recoveries within 91-107% are achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号