首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Ni-Al layered double hydroxides (LDHs) with Ni/Al molar ratio of 2, 3, and 4 were prepared by coprecipitation and treated under hydrothermal conditions at 180 °C for times up to 20 h. Thermal decomposition of the prepared samples was studied using thermal analysis and high-temperature X-ray diffraction. Hydrothermal treatment increased significantly the crystallite size of coprecipitated samples. The characteristic LDH diffraction lines disappeared completely at ca. 350 °C and a gradual crystallization of NiO-like mixed oxide was observed at higher temperatures. Hydrothermal treatment improved thermal stability of the Ni2Al and Ni3Al LDHs but only a slight effect of hydrothermal treatment was observed with the Ni4Al sample. The Rietveld refinement of powder XRD patterns of calcination products obtained at 450 °C showed a formation of Al-containing NiO-like oxide and a presence of a considerable amount of Al-rich amorphous component. Hydrothermal aging of the LDHs resulted in decreasing content of the amorphous component and enhanced substitution of Al cations into NiO-like structure. The hydrothermally treated samples also exhibited a worse reducibility of Ni2+ components. The NiAl2O4 spinel and NiO still containing a marked part of Al in the cationic sublattice were detected in the samples calcined at 900 °C. The Ni2Al LDHs hydrothermally treated for various times and related mixed oxides obtained at 450 °C showed an increase in pore size with increasing time of hydrothermal aging. The hydrothermal treatment of LDH precursor considerably improved the catalytic activity of Ni2Al mixed oxides in N2O decomposition, which can be explained by suppressing internal diffusion effect in catalysts grains.  相似文献   

2.
A study of electrodeposition of iron-based composite coatings containing zirconia dioxide particles from sulfate and methanesulfonate electrolytes showed that the zirconia dioxide content in the deposits obtained from the latter electrolyte can reach 10–12 wt %. Models of the process of ZrO2 particle incorporation into an iron matrix were considered. The microhardness of the composite deposits was estimated.  相似文献   

3.
Nishikawa  K.  Ota  M.  Izuo  S.  Fukunaka  Y.  Kusaka  E.  Ishii  R.  Selman  J. R. 《Journal of Solid State Electrochemistry》2004,8(3):174-181
Transient natural convection caused by Li+ electrodeposition at constant current along a vertical Li metal cathode immersed in a 0.5 M LiClO4–PC (propylene carbonate) electrolyte was compared with that by Cu2+ ion electrodeposition in aqueous CuSO4 solution. The concentration profile of the Li+ ions was measured in situ by holographic interferometry. The interference fringes start to shift with time at a higher current density. The concentration boundary layer thickness for Li+ ions was successfully determined. With the progress of electrodeposition, the density difference between the electrolyte at the cathode surface and the bulk electrolyte increased to induce upward natural convection of the electrolyte. The electrolyte velocity was measured by monitoring the movement of tracer particles. The measured transient behavior of the ionic mass and momentum transfer rates normalized with respect to the steady-state value was numerically analyzed. Transient natural convection along a vertical cathode due to Li metal electrodeposition can be reasonably explained by boundary layer theory, similar to the case of Cu electrodeposition in aqueous CuSO4 solution.  相似文献   

4.
We describe an unconventional electrochemistry approach to the preparation of silver nanowires. By the electrodeposition in the dilute solution without supporting electrolyte, silver nanowires with diameter 10–50 nm and length up to several μm have been synthesized. It was found that the absence of the supporting electrolyte played a key role in the formation of silver nanowires, and the products from the solution without supporting electrolytes were very different from those with supporting electrolytes. A possible mechanism concerning the transportation of silver ions by electro-migration and the diffusion was proposed.  相似文献   

5.
The aluminum electrodeposition kinetics is studied in solutions of aluminum bromide in such aromatic solvents as benzene, toluene, p-xylene, and ethylbenzene. The effect of the aluminum bromide concentration on the rate of aluminum electrodeposition from a xylene electrolyte is investigated. A failed aluminum-plating electrolyte can be restored to full working capacity by treating it with an alkyl halide. This capability to restore the covering power of aluminum-plating electrolytes decreases in the series CH3Cl > C2H5Br > n-3H7Br > n-C4H9Br. The temperature dependence of the rate of cathodic aluminum deposition is determined. The calculated effective activation energy for aluminum electrodeposition from a xylene–durene electrolyte is 44.5–64.5 kJ mol–1.  相似文献   

6.
Using hot water treatment of sol–gel derived precursor gel films, Co–Al and Ni–Al layered double hydroxide (LDH) thin films were prepared. The precursor gel films of Al2O3–CoO or Al2O3–NiO were prepared from cobalt or nickel nitrates and aluminum tri-sec-butoxide using the sol–gel method. Then, the precursor gel films were immersed in a NaOH aqueous solution of 100 °C. Nanocrystallites of Co–Al and Ni–Al LDH were precipitated with the hot water treatment with NaOH solution. The largest amounts of nanocrystals were obtained with a solution of pH = 10 for Co–Al LDH, and with that of pH = 9 for Ni–Al LDH. X-ray diffraction measurements confirmed that this process formed CO3 2− intercalated LDHs. Both Co–Al and Ni–Al LDH thin films were confirmed to work as electrodes for electrochemical devices by cyclic voltammogram measurements.  相似文献   

7.
Rough and porous Ni layers have been obtained by cathodic deposition from a NiCl2, NH4Cl solution, at high current density. Characterisation by SEM has shown that they consisted of micro-dendrites separated by pores with a typical diameter of 1 m. In addition, circular hollows (10–100 m in diameter) were found on the deposit surface; their density varied with the deposition current density and deposition charge. The surface roughness of the Ni deposits, measured by EIS, was found to increase roughly linearly with the deposition charge, and to be little dependent on current density, provided a threshold value was exceeded. The oxygen evolution reaction has been studied on these electrodes by simultaneous real-time measurements of potential and electrolyte resistance fluctuations. The analysis of the electrochemical noise indicated that the dimensions of oxygen bubbles detaching from the electrodes slightly increased with the deposit surface roughness. It is not clear, however, whether or not this increase was associated with the effect of the small (1 m) or the large (10–100 m) features on the electrode-bubble interactions.  相似文献   

8.
在含Ni2+的2AlCl3/Et3NHCl离子液体中的铜电极上通过恒电位电沉积制备出金属Ni和Ni-Al合金.采用循环伏安和计时电流方法,揭示铜电极上沉积金属Ni的成核机理,研究了电沉积Ni-Al合金的机理,以及恒电位沉积Ni-Al合金工艺条件对沉积Ni-Al合金表面形貌和电流效率的影响.结果表明:在铜电极上电沉积金属Ni的成核机理为受扩散控制的三维瞬时成核过程.在电量≥3.0 C时,电沉积Ni-Al合金的组成基本不再变化.Ni-Al合金的电沉积机理为,Ni的电沉积受扩散控制,同时进行Al的欠电位沉积,在Ni-Al合金电沉积过程中某些Ni-Al合金相的沉积可能受动力学限制而使Ni-Al合金的组成偏离热力学预测结果.在电沉积Ni-Al合金的沉积电流小且平稳,电沉积速率慢条件下,Ni-Al合金表面形貌致密均一,反之就会出现瘤节.电沉积Ni-Al合金的电流效率>90%.电沉积物的组成接近于Ni3Al合金.  相似文献   

9.
《Solid State Sciences》2007,9(3-4):279-286
The layered double hydroxides (LDH) of Zn with Al containing intercalated CO32− and NO3 ions undergo solution decomposition to yield a highly crystalline oxide mixture comprising ZnO and ZnAl2O4 at temperatures as low as 150–180 °C under hydrothermal conditions. In contrast solid-state decomposition takes place at a much higher temperature (240–315 °C) in air. Solution decomposition is not only guided by the low octahedral crystal field stabilization energy of Zn2+ ions, a factor that also affects solid-state decomposition, but also by solubility considerations. The LDHs of Mg and Ni with Al do not undergo solution decomposition.  相似文献   

10.
《印度化学会志》2023,100(6):101009
It is crucial to obtain a reliable electrolyte system that is used for replacing thermally unstable and the moisture sensitive LiPF6 salt in liquid electrolytes for developing excellent cycle stability lithium ion batteries with high safety. In this work, a kind of hybrid electrolytes, adding Ga–Bi co-doped Li7La3Zr2O12 (LLZO) into LiTFSI based commercial electrolyte, was successfully prepared. The results shows that adding Ga–Bi co-doped LLZO ceramic particles is benefit for enhancing conductivity of LiTFSI based commercial electrolyte, which is 3.14 mS cm−1 from 3.02 mS cm−1. Furthermore, the LiFePO4| |Li cell assembling with LiTFSI based electrolyte with Ga–Bi co-doped LLZO ceramic particles shows good cycle performance and coulomb efficiency (100% except for the initial cycle value of 88%) due to a passivation multi-element film formed for preventing severe corrosion to the Al foil. The battery delivered a high first cycle discharge capacity of 144.2 mAh g−1 (85% of theoretical LiFePO4.) and a maximum value of 152.6 mAh g−1 after the 69th cycle. After the 300 stable cycle, the capacity of 130.8 mAh g−1 (85.7% of the maximum data) remained.  相似文献   

11.
Mg–Al–Fe–NO3 layered double hydroxides (LDHs) with a constant Mg2+/(Al3+ + Fe3+) molar ratio but varying Al3+/Fe3+ molar ratios were successfully synthesized by a mechano-hydrothermal (MHT) method from Mg(OH)2, Al(OH)3 and Fe(NO3)3·9H2O or Mg(NO3)2·6H2O as starting materials. The resulting LDHs (MHT-LDHs) were characterized by XRD, TEM, SEM, FT-IR, and zeta potential, size distribution and specific surface area analyses. It was found that pre-milling played a key role in the LDH formation during subsequent hydrothermal treatment. The MHT route is advantageous in terms of low reaction temperature compared with the conventional hydrothermal method, and the target products are of high crystallinity and good dispersion compared with the conventional mechanochemical (MC) method. The MHT-LDHs had higher specific surface area and zeta potential, and lower hydrodynamic diameter than LDHs obtained by MC method (MC-LDHs). Furthermore, the removal of Cr(VI) from aqueous solutions using the LDHs was examined, showing that the MHT-LDHs are of higher removal efficiency than MC-LDHs for the heavy metal pollutant.  相似文献   

12.
This study examined the effect of the interlayer spacing of a Mg–Al layered double hydroxide (Mg–Al LDH) on the ability of the Mg–Al LDH to take up a nonionic organic material. Mg–Al LDHs, intercalated with 1-propanesulfonate (PS?), 1-hexanesulfonate (HS?), and 1-dodecanesulfonate (DS?), were prepared by coprecipitation, yielding PS·Mg–Al LDH, HS·Mg–Al LDH, and DS·Mg–Al LDH, respectively. The increase in the alkyl chain lengths of the Mg–Al LDHs (PS? < HS? < DS?) resulted in the perpendicular orientation of the organic acid anions in the interlayer of Mg–Al LDH, which in turn resulted in more organic acid anions being accommodated in the interlayer space. An organic acid anion with a large molecular length was more easily intercalated in the interlayer of Mg–Al LDH than one with a small molecular length. This was attributed to the hydrophobic interaction between the alkyl chains, affecting the intercalation of the organic acid anions. The uptake of N,N-dimethylaniline (DMA) by Mg–Al LDHs increased in the order PS·Mg–Al LDH < HS·Mg–Al LDH < DS·Mg–Al LDH. The uptake was attributed to the hydrophobic interactions between DMA and the intercalated PS?, HS?, and DS?. Thus, Mg–Al LDH, which has a lot of large interlayer spacings when intercalated with organic acid anions, can take up a large number of DMA molecules from an aqueous solution.  相似文献   

13.
The electrochemistry of Hf(IV) and the electrodeposition of Al–Hf alloys were examined in the Lewis acidic 66.7–33.3 mol% aluminum chloride-1-ethyl-3-methylimidazolium chloride molten salt containing HfCl4. When cyclic staircase voltammetry was carried out at a platinum disk electrode in this melt, the deposition and stripping waves for Al shifted to negative and positive potentials, respectively, suggesting that aluminum stripping is more difficult due to the formation of Al–Hf alloys. Al–Hf alloy electrodeposits containing ~13 at.% Hf were obtained on Cu rotating wire and cylinder electrodes. The Hf content in the Al–Hf alloy deposits depended on the HfCl4 concentration in the melt, the electrodeposition temperature, and the applied current density. The deposits were composed of dense crystals and were completely chloride-free. The chloride-induced pitting corrosion potential of the resulting Al–Hf alloys was approximately +0.30 V against pure aluminum when the Hf content was above 10 at.%.  相似文献   

14.
Traces of Cd were determined by electrothermal atomic absorption spectrometry after electrochemical preconcentration on a commercial graphite ridge probe modified with Pd. The Pd electrochemically deposited on the probe surface served not only as the modifier but it also protected the graphite surface. Cd was electrodeposited at a controlled potential − 1.2 V (vs. saturated calomel electrode) using the Pd-modified graphite probe as a working electrode. The sensitivity of Cd determination remained unchanged for 300 electrodeposition and atomization cycles. The detection limit (3σblank) was improved with increasing time of electrolysis and was 1.2 ng l− 1 for a 10 min electrolysis time in the presence of 0.1 mol l− 1 NaNO3. The procedure was applied for the determination of Cd in (1 + 1) diluted seawater and in (1 + 1) diluted urine samples using the standard addition method.  相似文献   

15.
Polyindole (PIn) has attracted extensive interest as promising energy storage materials owing to fairly good thermal stability, high redox activity and stability, however, it is challenging to prepare high-quality PIn in neutral solvents by electrochemical method. Herein, a simple route, based on MoS2 nanosheets as electrolytes, has been developed for the electrochemical preparation of PIn/MoS2 nanocomposite in acetonitrile solution. Due to the coordination interaction between indole and MoS2, the onset oxidation potential of indole in this medium was reduced to 0.5 V from 0.75 V determined in acetonitrile/LiClO4. The morphologies and structures of as-obtained PIn/MoS2 nanocomposite were characterized using SEM, TEM, XRD, Raman and XPS. The results of thermal analysis indicated that the PIn/MoS2 nanocomposite had an improved thermal stability relative to PIn and MoS2 nanosheets. Moreover, the specific capacitance of PIn/MoS2 nanocomposite was 8.3 times higher than that of PIn prepared acetonitrile/LiClO4. To the best of our knowledge, this is the first report on the high-efficiency electrodeposition of PIn/MoS2 nanocomposite in MoS2-based acetonitrile solution, which will be a promising candidate as a high efficient electrode material in the application of supercapacitors.  相似文献   

16.
Co-Mn-Al layered double hydroxides (LDHs) with various Co:Mn:Al molar ratios (4:2:0, 4:1.5:0.5, 4:1:1, 4:0.5:1.5, and 4:0:2) were prepared and characterized. Magnesium containing LDHs Co-Mg-Mn (2:2:2), Co-Mg-Mn-Al (2:2:1:1), and Co-Mg-Al (2:2:2) were also studied. Thermal decomposition of prepared LDHs and formation of related mixed oxides were studied using high-temperature X-ray powder diffraction and thermal analysis. The thermal decomposition of Mg-free LDHs starts by their partial dehydration accompanied by shrinkage of the lattice parameter c from ca. 0.76 to 0.66 nm. The dehydration temperature of the Co-Mn-Al LDHs decreases with increasing Mn content from 180 °C in Co-Al sample to 120 °C in sample with Co:Mn:Al molar ratio of 4:1.5:0.5. A subsequent step is a complete decomposition of the layered structure to nanocrystalline spinel, the complete dehydration, and finally decarbonation of the mixed oxide phase. Spinel-type oxides were the primary crystallization products. Mg-containing primary spinels had practically empty tetrahedral cationic sites. A dramatic increase of the spinel cell size upon heating and analysis by Raman spectroscopy revealed a segregation of Co-rich spinel in Co-Mn and Co-Mn-Al specimens. In calcination products obtained at 500 °C, the spinel mean coherence length was 5-10 nm, and the total content of the X-ray diffraction crystalline portion was 50-90%. These calcination products were tested as catalysts in the total oxidation of ethanol and decomposition of N2O. The catalytic activity in ethanol combustion was enhanced by increasing (Co+Mn) content while an optimum content of reducible components was necessary for high activity in N2O decomposition, where the highest conversions were found for calcined Co-Mn-Al sample with Co:Mn:Al molar ratio of 4:1:1.  相似文献   

17.
Kinetics of the Sn-Sb alloy electrodeposition from sulfate electrolytes containing organic additives (syntanol DS-10, Formalin, 1,4-butynediol) is studied by the faradaic impedance method. Bright Sn-Sb alloy coatings are plated in this electrolyte at ic = 0.5-5 A/dm2. With increasing ic, the Sb content in the alloy decreases from 14 to 6.6 wt %  相似文献   

18.
Gold was determined by electrothermal atomic absorption spectrometry after electrochemical preconcentration on the graphite ridge probe used as a working electrode and sample support. The probe surface was electrochemically modified with Pd, Re and the mixture of both. The electrolysis of gold was performed under galvanostatic control at 0.5 mA. Maximum pyrolysis temperature for the probe surface modified with Pd was 1200 °C, with Re 1300 °C. The relative standard deviation for the determination of 2 μg l− 1 Au was not higher than 5.6% (n = 8) for 2 min electrodeposition. The sensitivity of gold determination was reproducible for 300 electrodeposition and atomization cycles. When the probe surface was modified with a mixture of Pd and Re the detection limit was 31 ng l− 1 for 2 min electrodeposition, 3.7 ng l− 1 for 30 min, 1.5 ng l− 1 for 1 h and 0.4 ng l− 1 for 4 h electrodeposition, respectively. The procedure was applied to the determination of gold in river water samples. The relative standard deviation for the determination of 2.5 ng l− 1 Au at 4 h electrodeposition time at 0.5 mA was 7.5%.  相似文献   

19.
In the present study, Mg–Al layered double hydroxide intercalated with nitrate anions (LDH-NO3) was synthesized, modified with the anionic surfactant, sodium lauryl sulfate, and applied for the removal of 152+154Eu from aqueous solutions. Modification of the as-synthesized Mg–Al layered double hydroxide was carried out at surfactant concentration of 0.01 M (the organo-LDH produced denoted LDH-NaLS). The as-synthesized and surfactant-intercalated LDHs were characterized by FT-IR and energy-dispersive X-ray spectroscopy techniques. The effect of some variables such as solution pH, contact time and sorbate concentration on removal of 152+154Eu was investigated. The kinetic data obtained were well fitted by the pseudo-second-order kinetic model rather than the pseudo-first-order model. Intraparticle diffusion model showed that sorption of 152+154Eu proceed by intraparticle diffusion together with boundary layer diffusion. Experimental isotherm data were well described by Langmuir model. Organo-LDH was found to have higher capacity (156.45 mg g−1) for europium than the as-synthesized LDH-NO3 (119.56 mg g−1). Comparing LDHs capacities obtained for Eu(III) in the present work with other sorbents reported in literature indicated that LDHs have the highest capacities. Application of the developed process for removal of 152+154Eu(III) from radioactive process wastewaters was also studied and the obtained results revealed that these LDHs are promising materials for treatment of radioactive wastewaters.  相似文献   

20.
In this research article, ZnO–Al2O3–CeO2–Ce2O3 mixed metal oxides phases were prepared by calcination of Zn–Al/Ce–CO3 layered double hydroxides (LDH) precursors, and evaluated for the photocatalytic degradation of methyl orange (MO) as a model textile dye from aqueous solution under UV irradiation. First, Zn–Al–CO3 and a series of Zn–Al/Ce–CO3 with different Ce content (5, 10, 15, 20%) were synthesized through co-precipitation method at Zn/(Al+Ce) molar ratio (r) of 3, then subjected to calcination at 500 °C for 6 h. Samples were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy coupled with energy dispersive X-ray analysis and pH point of zero charge. The experimental results of the photodegradation reveal that the photocatalyst developed from Zn–Al–Ce10%-CO3 LDH exhibits the highest photocatalytic activity, with a degradation efficiency of 99.8% after 300 min of irradiation. This performance was mainly ascribed to the presence of difference state of Ce, leading a highest separation efficiency of electrons and holes. The recycling tests suggests a much high photostability and reusability of the photocatalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号